Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit 1c8f2b0

Browse files
committedJan 10, 2025·
renaming
1 parent c4da620 commit 1c8f2b0

File tree

5 files changed

+112
-181
lines changed

5 files changed

+112
-181
lines changed
 

‎CHANGELOG_UNRELEASED.md

+19-88
Original file line numberDiff line numberDiff line change
@@ -14,10 +14,21 @@
1414
+ lemmas `horner0_ext`, `hornerD_ext`, `horner_scale_ext`, `hornerC_ext`,
1515
`derivable_horner`, `derivE`, `continuous_horner`
1616
+ instance `is_derive_poly`
17-
- in `mathcomp_extra.v`:
18-
+ lemma `partition_disjoint_bigfcup`
19-
- in `lebesgue_measure.v`:
20-
+ lemma `measurable_indicP`
17+
18+
- in `lebesgue_integral.v`:
19+
+ lemmas `integral_fin_num_abs`, `Rintegral_cst`, `le_Rintegral`
20+
21+
- new file `pi_irrational.v`:
22+
+ lemmas `measurable_poly`
23+
+ definition `rational`
24+
+ module `pi_irrational`
25+
+ lemma `pi_irrationnal`
26+
27+
- in `numfun.v`
28+
+ lemmas `funeposE`, `funenegE`, `funepos_comp`, `funeneg_comp`
29+
30+
- in `classical_sets.v`:
31+
+ lemmas `xsectionE`, `ysectionE`
2132

2233
- in `numfun.v`:
2334
+ defintions `funrpos`, `funrneg` with notations `^\+` and `^\-`
@@ -29,47 +40,26 @@
2940

3041
- in `measure.v`:
3142
+ lemma `preimage_class_comp`
32-
+ defintions `mapping_display`, `g_sigma_algebra_mappingType`, `g_sigma_algebra_mapping`,
33-
notations `.-mapping`, `.-mapping.-measurable`
43+
+ defintions `preimage_display`, `g_sigma_algebra_preimageType`, `g_sigma_algebra_preimage`,
44+
notations `.-preimage`, `.-preimage.-measurable`
3445

3546
- in `lebesgue_measure.v`:
3647
+ lemmas `measurable_funrpos`, `measurable_funrneg`
3748

38-
- in `lebesgue_integral.v`:
39-
+ lemmas `integral_fin_num_abs`, `Rintegral_cst`, `le_Rintegral`
40-
41-
- new file `pi_irrational.v`:
42-
+ lemmas `measurable_poly`
43-
+ definition `rational`
44-
+ module `pi_irrational`
45-
+ lemma `pi_irrationnal`
46-
- in `constructive_ereal.v`:
47-
+ notations `\prod` in scope ereal_scope
48-
+ lemmas `prode_ge0`, `prode_fin_num`
49-
- in `probability.v`:
50-
+ lemma `expectation_def`
51-
+ notation `'M_`
52-
5349
- new file `independence.v`:
5450
+ lemma `expectationM_ge0`
5551
+ definition `independent_events`
5652
+ definition `mutual_independence`
5753
+ definition `independent_RVs`
5854
+ definition `independent_RVs2`
59-
+ lemmas `g_sigma_algebra_mapping_comp`, `g_sigma_algebra_mapping_funrpos`,
60-
`g_sigma_algebra_mapping_funrneg`
55+
+ lemmas `g_sigma_algebra_preimage_comp`, `g_sigma_algebra_preimage_funrpos`,
56+
`g_sigma_algebra_preimage_funrneg`
6157
+ lemmas `independent_RVs2_comp`, `independent_RVs2_funrposneg`,
6258
`independent_RVs2_funrnegpos`, `independent_RVs2_funrnegneg`,
6359
`independent_RVs2_funrpospos`
6460
+ lemma `expectationM_ge0`, `integrable_expectationM`, `independent_integrableM`,
6561
` expectation_prod`
6662

67-
- in `numfun.v`
68-
+ lemmas `funeposE`, `funenegE`, `funepos_comp`, `funeneg_comp`
69-
70-
- in `classical_sets.v`:
71-
+ lemmas `xsectionE`, `ysectionE`
72-
7363
### Changed
7464

7565
- in `lebesgue_integrale.v`
@@ -95,33 +85,6 @@
9585
+ `sigma_algebra_image_class` -> `sigma_algebra_image`
9686
+ `sigma_algebra_preimage_classE` -> `g_sigma_preimageE`
9787
+ `preimage_classes_comp` -> `g_sigma_preimageU_comp`
98-
99-
### Renamed
100-
101-
- in `lebesgue_measure.v`:
102-
+ `measurable_fun_indic` -> `measurable_indic`
103-
+ `emeasurable_fun_sum` -> `emeasurable_sum`
104-
+ `emeasurable_fun_fsum` -> `emeasurable_fsum`
105-
+ `ge0_emeasurable_fun_sum` -> `ge0_emeasurable_sum`
106-
- in `probability.v`:
107-
+ `expectationM` -> `expectationZl`
108-
109-
- in `classical_sets.v`:
110-
+ `preimage_itv_o_infty` -> `preimage_itvoy`
111-
+ `preimage_itv_c_infty` -> `preimage_itvcy`
112-
+ `preimage_itv_infty_o` -> `preimage_itvNyo`
113-
+ `preimage_itv_infty_c` -> `preimage_itvNyc`
114-
115-
- in `constructive_ereal.v`:
116-
+ `maxeMr` -> `maxe_pMr`
117-
+ `maxeMl` -> `maxe_pMl`
118-
+ `mineMr` -> `mine_pMr`
119-
+ `mineMl` -> `mine_pMl`
120-
121-
- in `probability.v`:
122-
+ `integral_distribution` -> `ge0_integral_distribution`
123-
124-
- file `homotopy_theory/path.v` -> `homotopy_theory/continuous_path.v`
12588

12689
### Generalized
12790

@@ -143,38 +106,6 @@
143106
- in `sequences.v`:
144107
+ notations `nneseries_pred0`, `eq_nneseries`, `nneseries0`,
145108
`ereal_cvgPpinfty`, `ereal_cvgPninfty` (were deprecated since 0.6.0)
146-
- in `topology_structure.v`:
147-
+ lemma `closureC`
148-
149-
- in file `lebesgue_integral.v`:
150-
+ lemma `approximation`
151-
152-
### Removed
153-
154-
- in `lebesgue_integral.v`:
155-
+ definition `cst_mfun`
156-
+ lemma `mfun_cst`
157-
158-
- in `cardinality.v`:
159-
+ lemma `cst_fimfun_subproof`
160-
161-
- in `lebesgue_integral.v`:
162-
+ lemma `cst_mfun_subproof` (use lemma `measurable_cst` instead)
163-
+ lemma `cst_nnfun_subproof` (turned into a `Let`)
164-
+ lemma `indic_mfun_subproof` (use lemma `measurable_fun_indic` instead)
165-
166-
- in `lebesgue_integral.v`:
167-
+ lemma `measurable_indic` (was uselessly specializing `measurable_fun_indic` (now `measurable_indic`) from `lebesgue_measure.v`)
168-
+ notation `measurable_fun_indic` (deprecation since 0.6.3)
169-
- in `constructive_ereal.v`
170-
+ notation `lee_opp` (deprecated since 0.6.5)
171-
+ notation `lte_opp` (deprecated since 0.6.5)
172-
- in `measure.v`:
173-
+ `dynkin_setI_bigsetI` (use `big_ind` instead)
174-
175-
- in `lebesgue_measurable.v`:
176-
+ notation `measurable_fun_power_pos` (deprecated since 0.6.3)
177-
+ notation `measurable_power_pos` (deprecated since 0.6.4)
178109

179110
### Infrastructure
180111

‎theories/independence.v

+51-50
Original file line numberDiff line numberDiff line change
@@ -213,7 +213,7 @@ Section mutual_independence_properties.
213213
Context {R : realType} d {T : measurableType d} (P : probability T R).
214214
Local Open Scope ereal_scope.
215215

216-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(i) *)
216+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(i) *)
217217
Lemma mutual_independence_fset {I0 : choiceType} (I : {fset I0})
218218
(F : I0 -> set_system T) :
219219
(forall i, i \in I -> F i `<=` measurable /\ (F i) [set: T]) ->
@@ -237,7 +237,7 @@ rewrite -big_seq => ->.
237237
by rewrite !big_seq; apply: eq_bigr => i iJ; rewrite /E' iJ.
238238
Qed.
239239

240-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(ii) *)
240+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(ii) *)
241241
Lemma mutual_independence_finiteS {I0 : choiceType} (I : set I0)
242242
(F : I0 -> set_system T) :
243243
mutual_independence P I F <->
@@ -255,7 +255,7 @@ split=> [i Ii|J JI E EF].
255255
by have [_] := indeF _ JI; exact.
256256
Qed.
257257

258-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iii) *)
258+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iii) *)
259259
Theorem mutual_independence_finite_g_sigma {I0 : choiceType} (I : set I0)
260260
(F : I0 -> set_system T) :
261261
(forall i, i \in I -> setI_closed (F i `|` [set set0])) ->
@@ -437,7 +437,7 @@ apply/negP/set0P; exists j; split => //.
437437
exact/set_mem.
438438
Qed.
439439

440-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.13(iv) *)
440+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.13(iv) *)
441441
Lemma mutual_independence_bigcup (K0 I0 : pointedType) (K : {fset K0})
442442
(I_ : K0 -> set I0) (I : set I0) (F : I0 -> set_system T) :
443443
trivIset [set` K] (fun i => I_ i) ->
@@ -482,28 +482,28 @@ Qed.
482482

483483
End mutual_independence_properties.
484484

485-
Section g_sigma_algebra_mapping_lemmas.
485+
Section g_sigma_algebra_preimage_lemmas.
486486
Context d {T : measurableType d} {R : realType}.
487487

488-
Lemma g_sigma_algebra_mapping_comp (X : {mfun T >-> R}) (f : R -> R) :
488+
Lemma g_sigma_algebra_preimage_comp (X : {mfun T >-> R}) (f : R -> R) :
489489
measurable_fun setT f ->
490-
g_sigma_algebra_mapping (f \o X)%R `<=` g_sigma_algebra_mapping X.
490+
g_sigma_algebra_preimage (f \o X)%R `<=` g_sigma_algebra_preimage X.
491491
Proof. exact: preimage_set_system_comp. Qed.
492492

493-
Lemma g_sigma_algebra_mapping_funrpos (X : {mfun T >-> R}) :
494-
g_sigma_algebra_mapping X^\+%R `<=` d.-measurable.
493+
Lemma g_sigma_algebra_preimage_funrpos (X : {mfun T >-> R}) :
494+
g_sigma_algebra_preimage X^\+%R `<=` d.-measurable.
495495
Proof.
496496
by move=> A/= -[B mB] <-; have := measurable_funrpos (measurable_funP X); exact.
497497
Qed.
498498

499-
Lemma g_sigma_algebra_mapping_funrneg (X : {mfun T >-> R}) :
500-
g_sigma_algebra_mapping X^\-%R `<=` d.-measurable.
499+
Lemma g_sigma_algebra_preimage_funrneg (X : {mfun T >-> R}) :
500+
g_sigma_algebra_preimage X^\-%R `<=` d.-measurable.
501501
Proof.
502502
by move=> A/= -[B mB] <-; have := measurable_funrneg (measurable_funP X); exact.
503503
Qed.
504504

505-
End g_sigma_algebra_mapping_lemmas.
506-
Arguments g_sigma_algebra_mapping_comp {d T R X} f.
505+
End g_sigma_algebra_preimage_lemmas.
506+
Arguments g_sigma_algebra_preimage_comp {d T R X} f.
507507

508508
Section independent_RVs.
509509
Context {R : realType} d (T : measurableType d).
@@ -513,7 +513,7 @@ Variable P : probability T R.
513513

514514
Definition independent_RVs (I : set I0)
515515
(X : forall i : I0, {mfun T >-> T' i}) : Prop :=
516-
mutual_independence P I (fun i => g_sigma_algebra_mapping (X i)).
516+
mutual_independence P I (fun i => g_sigma_algebra_preimage (X i)).
517517

518518
End independent_RVs.
519519

@@ -532,7 +532,7 @@ Context {I0 : choiceType}.
532532
Context {d' : I0 -> _} (T' : forall i : I0, measurableType (d' i)).
533533
Variable P : probability T R.
534534

535-
(**md see Achim Klenke's Probability Thery, Ch.2, sec.2.1, thm.2.16 *)
535+
(**md see Achim Klenke's Probability Theory, Ch.2, sec.2.1, thm.2.16 *)
536536
Theorem independent_generators (I : set I0) (F : forall i : I0, set_system (T' i))
537537
(X : forall i, {RV P >-> T' i}) :
538538
(forall i, i \in I -> setI_closed (F i)) ->
@@ -550,9 +550,9 @@ have closed_preimage i : I i -> setI_closed (preimage_set_system setT (X i) (F i
550550
- exact/mem_set.
551551
- by rewrite setTI.
552552
have gen_preimage i : I i ->
553-
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_mapping (X i).
553+
<<s preimage_set_system setT (X i) (F i) >> = g_sigma_algebra_preimage (X i).
554554
move=> Ii.
555-
rewrite /g_sigma_algebra_mapping AsF; last exact/mem_set.
555+
rewrite /g_sigma_algebra_preimage AsF; last exact/mem_set.
556556
by rewrite -g_sigma_preimageE.
557557
rewrite /independent_RVs.
558558
suff: mutual_independence P I (fun i => <<s preimage_set_system setT (X i) (F i) >>).
@@ -576,78 +576,79 @@ Lemma independent_RVs2_comp (X Y : {RV P >-> R}) (f g : {mfun R >-> R}) :
576576
Proof.
577577
move=> indeXY; split => /=.
578578
- move=> [] _ /= A.
579-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
579+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
580580
exact/measurableT_comp.
581-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
581+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
582582
exact/measurableT_comp.
583583
- move=> J _ E JE.
584584
apply indeXY => //= i iJ; have := JE _ iJ.
585585
by move: i {iJ} =>[|]//=; rewrite !inE => Eg;
586-
exact: g_sigma_algebra_mapping_comp Eg.
586+
exact: g_sigma_algebra_preimage_comp Eg.
587587
Qed.
588588

589589
Lemma independent_RVs2_funrposneg (X Y : {RV P >-> R}) :
590590
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\-.
591591
Proof.
592592
move=> indeXY; split=> [[|]/= _|J J2 E JE].
593-
- exact: g_sigma_algebra_mapping_funrneg.
594-
- exact: g_sigma_algebra_mapping_funrpos.
593+
- exact: g_sigma_algebra_preimage_funrneg.
594+
- exact: g_sigma_algebra_preimage_funrpos.
595595
- apply indeXY => //= i iJ; have := JE _ iJ.
596596
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
597-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
597+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
598598
exact: measurable_funrneg.
599-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R) => //.
599+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R) => //.
600600
exact: measurable_funrpos.
601601
Qed.
602602

603603
Lemma independent_RVs2_funrnegpos (X Y : {RV P >-> R}) :
604604
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\+.
605605
Proof.
606606
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
607-
- exact: g_sigma_algebra_mapping_funrpos.
608-
- exact: g_sigma_algebra_mapping_funrneg.
607+
- exact: g_sigma_algebra_preimage_funrpos.
608+
- exact: g_sigma_algebra_preimage_funrneg.
609609
- apply indeXY => //= i iJ; have := JE _ iJ.
610610
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
611-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
611+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
612612
exact: measurable_funrpos.
613-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
613+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
614614
exact: measurable_funrneg.
615615
Qed.
616616

617617
Lemma independent_RVs2_funrnegneg (X Y : {RV P >-> R}) :
618618
independent_RVs2 P X Y -> independent_RVs2 P X^\- Y^\-.
619619
Proof.
620620
move=> indeXY; split=> [/= [|]// _ |J J2 E JE].
621-
- exact: g_sigma_algebra_mapping_funrneg.
622-
- exact: g_sigma_algebra_mapping_funrneg.
621+
- exact: g_sigma_algebra_preimage_funrneg.
622+
- exact: g_sigma_algebra_preimage_funrneg.
623623
- apply indeXY => //= i iJ; have := JE _ iJ.
624624
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
625-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
625+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
626626
exact: measurable_funrneg.
627-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr (- x) 0)%R).
627+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr (- x) 0)%R).
628628
exact: measurable_funrneg.
629629
Qed.
630630

631631
Lemma independent_RVs2_funrpospos (X Y : {RV P >-> R}) :
632632
independent_RVs2 P X Y -> independent_RVs2 P X^\+ Y^\+.
633633
Proof.
634634
move=> indeXY; split=> [/= [|]//= _ |J J2 E JE].
635-
- exact: g_sigma_algebra_mapping_funrpos.
636-
- exact: g_sigma_algebra_mapping_funrpos.
635+
- exact: g_sigma_algebra_preimage_funrpos.
636+
- exact: g_sigma_algebra_preimage_funrpos.
637637
- apply indeXY => //= i iJ; have := JE _ iJ.
638638
move/J2 : iJ; move: i => [|]// _; rewrite !inE.
639-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
639+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
640640
exact: measurable_funrpos.
641-
+ apply: (g_sigma_algebra_mapping_comp (fun x => maxr x 0)%R).
641+
+ apply: (g_sigma_algebra_preimage_comp (fun x => maxr x 0)%R).
642642
exact: measurable_funrpos.
643643
Qed.
644644

645645
End independent_RVs_lemmas.
646646

647-
Definition preimage_classes I (d : I -> measure_display)
648-
(Tn : forall k, semiRingOfSetsType (d k)) (T : Type) (fn : forall k, T -> Tn k) :=
649-
<<s \bigcup_k preimage_set_system setT (fn k) measurable >>.
650-
Arguments preimage_classes {I} d Tn {T} fn.
647+
Definition preimage_classes I0 (I : set I0) (d_ : forall i : I, measure_display)
648+
(T_ : forall k : I, semiRingOfSetsType (d_ k)) (T : Type)
649+
(f_ : forall k : I, T -> T_ k) :=
650+
<<s \bigcup_(k : I) preimage_set_system setT (f_ k) measurable >>.
651+
Arguments preimage_classes {I0} I d_ T_ {T} f_.
651652

652653
Lemma measurable_prod d [T : measurableType d] [R : realType] [D : set T] [I : eqType]
653654
(s : seq I) [h : I -> T -> R] :
@@ -717,7 +718,7 @@ rewrite /independent_RVs2 /independent_RVs /mutual_independence /= => -[_].
717718
move/(_ [fset false; true]%fset (@subsetT _ _)
718719
(fun b => if b then Y @^-1` B2 else X @^-1` B1)).
719720
rewrite !big_fsetU1 ?inE//= !big_seq_fset1/=.
720-
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_mapping.
721+
apply => -[|] /= _; rewrite !inE; rewrite /g_sigma_algebra_preimage.
721722
by exists B2 => //; rewrite setTI.
722723
by exists B1 => //; rewrite setTI.
723724
Qed.
@@ -958,23 +959,23 @@ pose AY := dyadic_approx setT (EFin \o Y).
958959
pose BX := integer_approx setT (EFin \o X).
959960
pose BY := integer_approx setT (EFin \o Y).
960961
have mA (Z : {RV P >-> R}) m k : (k < m * 2 ^ m)%N ->
961-
g_sigma_algebra_mapping Z (dyadic_approx setT (EFin \o Z) m k).
962-
move=> mk; rewrite /g_sigma_algebra_mapping /dyadic_approx mk setTI.
962+
g_sigma_algebra_preimage Z (dyadic_approx setT (EFin \o Z) m k).
963+
move=> mk; rewrite /g_sigma_algebra_preimage /dyadic_approx mk setTI.
963964
rewrite /preimage_set_system/=; exists [set` dyadic_itv R m k] => //.
964965
rewrite setTI/=; apply/seteqP; split => z/=.
965966
by rewrite inE/= => Zz; exists (Z z).
966967
by rewrite inE/= => -[r rmk] [<-].
967968
have mB (Z : {RV P >-> R}) k :
968-
g_sigma_algebra_mapping Z (integer_approx setT (EFin \o Z) k).
969-
rewrite /g_sigma_algebra_mapping /integer_approx setTI /preimage_set_system/=.
969+
g_sigma_algebra_preimage Z (integer_approx setT (EFin \o Z) k).
970+
rewrite /g_sigma_algebra_preimage /integer_approx setTI /preimage_set_system/=.
970971
by exists `[k%:R, +oo[%classic => //; rewrite setTI preimage_itvcy.
971972
have m1A (Z : {RV P >-> R}) : forall k, (k < n * 2 ^ n)%N ->
972973
measurable_fun setT
973-
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_mappingType Z -> R).
974+
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_preimageType Z -> R).
974975
move=> k kn.
975-
exact/(@measurable_indicP _ (g_sigma_algebra_mappingType Z))/mA.
976+
exact/(@measurable_indicP _ (g_sigma_algebra_preimageType Z))/mA.
976977
rewrite !inE => /orP[|]/eqP->{i} //=.
977-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType X) _ setT (X_ n).
978+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType X) _ setT (X_ n).
978979
rewrite nnsfun_approxE//.
979980
apply: measurable_funD => //=.
980981
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -983,7 +984,7 @@ rewrite !inE => /orP[|]/eqP->{i} //=.
983984
by apply: measurable_indic; exact: mB.
984985
rewrite /measurable_fun => /(_ measurableT _ (measurable_set1 x)).
985986
by rewrite setTI.
986-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType Y) _ setT (Y_ n).
987+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType Y) _ setT (Y_ n).
987988
rewrite nnsfun_approxE//.
988989
apply: measurable_funD => //=.
989990
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -1036,7 +1037,7 @@ exact/measurable_EFinP/measurable_funM.
10361037
Qed.
10371038

10381039
(* TODO: rename to expectationM when deprecation is removed *)
1039-
Lemma expectation_prod (X Y : {RV P >-> R}) :
1040+
Lemma expectation_mul (X Y : {RV P >-> R}) :
10401041
independent_RVs2 P X Y ->
10411042
P.-integrable setT (EFin \o X) -> P.-integrable setT (EFin \o Y) ->
10421043
'E_P [X * Y] = 'E_P [X] * 'E_P [Y].

‎theories/kernel.v

-1
Original file line numberDiff line numberDiff line change
@@ -764,7 +764,6 @@ HB.instance Definition _ (P : probability Y R):=
764764

765765
End knormalize.
766766

767-
(* TODO: useful? *)
768767
Lemma measurable_fun_mnormalize d d' (X : measurableType d)
769768
(Y : measurableType d') (R : realType) (k : R.-ker X ~> Y) :
770769
measurable_fun [set: X] (fun x => mnormalize (k x) point : pprobability Y R).

‎theories/measure.v

+28-28
Original file line numberDiff line numberDiff line change
@@ -65,11 +65,11 @@ From HB Require Import structures.
6565
(* G.-sigma.-measurable A == A is measurable for the sigma-algebra <<s G >> *)
6666
(* g_sigma_algebraType G == the measurableType corresponding to <<s G >> *)
6767
(* This is an HB alias. *)
68-
(* g_sigma_algebra_mapping f == sigma-algebra generated by the mapping f *)
69-
(* g_sigma_algebra_mappingType f == the measurableType corresponding to *)
70-
(* g_sigma_algebra_mapping f *)
68+
(* g_sigma_algebra_preimage f == sigma-algebra generated by the function f *)
69+
(* g_sigma_algebra_preimageType f == the measurableType corresponding to *)
70+
(* g_sigma_algebra_preimage f *)
7171
(* This is an HB alias. *)
72-
(* f.-mapping.-measurable A == A is measurable for g_sigma_algebra_mapping f *)
72+
(* f.-preimage.-measurable A == A measurable for g_sigma_algebra_preimage f *)
7373
(* mu .-cara.-measurable == sigma-algebra of Caratheodory measurable sets *)
7474
(* ``` *)
7575
(* *)
@@ -298,9 +298,9 @@ Reserved Notation "'\d_' a" (at level 8, a at level 2, format "'\d_' a").
298298
Reserved Notation "G .-sigma" (at level 1, format "G .-sigma").
299299
Reserved Notation "G .-sigma.-measurable"
300300
(at level 2, format "G .-sigma.-measurable").
301-
Reserved Notation "f .-mapping" (at level 1, format "f .-mapping").
302-
Reserved Notation "f .-mapping.-measurable"
303-
(at level 2, format "f .-mapping.-measurable").
301+
Reserved Notation "f .-preimage" (at level 1, format "f .-preimage").
302+
Reserved Notation "f .-preimage.-measurable"
303+
(at level 2, format "f .-preimage.-measurable").
304304
Reserved Notation "d .-ring" (at level 1, format "d .-ring").
305305
Reserved Notation "d .-ring.-measurable"
306306
(at level 2, format "d .-ring.-measurable").
@@ -1818,38 +1818,38 @@ Notation sigma_algebra_image_class := sigma_algebra_image (only parsing).
18181818
#[deprecated(since="mathcomp-analysis 1.9.0", note="renamed to `g_sigma_preimageE`")]
18191819
Notation sigma_algebra_preimage_classE := g_sigma_preimageE (only parsing).
18201820

1821-
Definition mapping_display {T T'} : (T -> T') -> measure_display.
1821+
Definition preimage_display {T T'} : (T -> T') -> measure_display.
18221822
Proof. exact. Qed.
18231823

1824-
Definition g_sigma_algebra_mappingType d' (T : pointedType)
1824+
Definition g_sigma_algebra_preimageType d' (T : pointedType)
18251825
(T' : measurableType d') (f : T -> T') : Type := T.
18261826

1827-
Definition g_sigma_algebra_mapping d' (T : pointedType)
1827+
Definition g_sigma_algebra_preimage d' (T : pointedType)
18281828
(T' : measurableType d') (f : T -> T') :=
18291829
preimage_set_system setT f (@measurable _ T').
18301830

1831-
Section mapping_generated_sigma_algebra.
1831+
Section preimage_generated_sigma_algebra.
18321832
Context {d'} (T : pointedType) (T' : measurableType d').
18331833
Variable f : T -> T'.
18341834

1835-
Let mapping_set0 : g_sigma_algebra_mapping f set0.
1835+
Let preimage_set0 : g_sigma_algebra_preimage f set0.
18361836
Proof.
1837-
rewrite /g_sigma_algebra_mapping /preimage_set_system/=.
1837+
rewrite /g_sigma_algebra_preimage /preimage_class/=.
18381838
by exists set0 => //; rewrite preimage_set0 setI0.
18391839
Qed.
18401840

1841-
Let mapping_setC A :
1842-
g_sigma_algebra_mapping f A -> g_sigma_algebra_mapping f (~` A).
1841+
Let preimage_setC A :
1842+
g_sigma_algebra_preimage f A -> g_sigma_algebra_preimage f (~` A).
18431843
Proof.
1844-
rewrite /g_sigma_algebra_mapping /preimage_set_system/= => -[B mB] <-{A}.
1844+
rewrite /g_sigma_algebra_preimage /preimage_class/= => -[B mB] <-{A}.
18451845
by exists (~` B); [exact: measurableC|rewrite !setTI preimage_setC].
18461846
Qed.
18471847

1848-
Let mapping_bigcup (F : (set T)^nat) :
1849-
(forall i, g_sigma_algebra_mapping f (F i)) ->
1850-
g_sigma_algebra_mapping f (\bigcup_i (F i)).
1848+
Let preimage_bigcup (F : (set T)^nat) :
1849+
(forall i, g_sigma_algebra_preimage f (F i)) ->
1850+
g_sigma_algebra_preimage f (\bigcup_i (F i)).
18511851
Proof.
1852-
move=> mF; rewrite /g_sigma_algebra_mapping /preimage_set_system/=.
1852+
move=> mF; rewrite /g_sigma_algebra_preimage /preimage_class/=.
18531853
pose g := fun i => sval (cid2 (mF i)).
18541854
pose mg := fun i => svalP (cid2 (mF i)).
18551855
exists (\bigcup_i g i).
@@ -1858,17 +1858,17 @@ rewrite setTI /g preimage_bigcup; apply: eq_bigcupr => k _.
18581858
by case: (mg k) => _; rewrite setTI.
18591859
Qed.
18601860

1861-
HB.instance Definition _ := Pointed.on (g_sigma_algebra_mappingType f).
1861+
HB.instance Definition _ := Pointed.on (g_sigma_algebra_preimageType f).
18621862

1863-
HB.instance Definition _ := @isMeasurable.Build (mapping_display f)
1864-
(g_sigma_algebra_mappingType f) (g_sigma_algebra_mapping f)
1865-
mapping_set0 mapping_setC mapping_bigcup.
1863+
HB.instance Definition _ := @isMeasurable.Build (preimage_display f)
1864+
(g_sigma_algebra_preimageType f) (g_sigma_algebra_preimage f)
1865+
preimage_set0 preimage_setC preimage_bigcup.
18661866

1867-
End mapping_generated_sigma_algebra.
1867+
End preimage_generated_sigma_algebra.
18681868

1869-
Notation "f .-mapping" := (mapping_display f) : measure_display_scope.
1870-
Notation "f .-mapping.-measurable" :=
1871-
(measurable : set (set (g_sigma_algebra_mappingType f))) : classical_set_scope.
1869+
Notation "f .-preimage" := (preimage_display f) : measure_display_scope.
1870+
Notation "f .-preimage.-measurable" :=
1871+
(measurable : set (set (g_sigma_algebra_preimageType f))) : classical_set_scope.
18721872

18731873
Local Open Scope ereal_scope.
18741874

‎theories/probability.v

+14-14
Original file line numberDiff line numberDiff line change
@@ -912,7 +912,7 @@ Variable P : probability T R.
912912

913913
Definition independent_RVs (I0 : choiceType)
914914
(I : set I0) (X : I0 -> {mfun T >-> T'}) : Prop :=
915-
mutual_independence P I (fun i => g_sigma_algebra_mapping (X i)).
915+
mutual_independence P I (fun i => g_sigma_algebra_preimage (X i)).
916916

917917
Definition independent_RVs2 (X Y : {mfun T >-> T'}) :=
918918
independent_RVs [set: bool] [eta (fun=> cst point) with false |-> X, true |-> Y].
@@ -924,17 +924,17 @@ Context d {T : measurableType d} {R : realType}.
924924

925925
Lemma g_sigma_algebra_mapping_comp (X : {mfun T >-> R}) (f : R -> R) :
926926
measurable_fun setT f ->
927-
g_sigma_algebra_mapping (f \o X)%R `<=` g_sigma_algebra_mapping X.
927+
g_sigma_algebra_preimage (f \o X)%R `<=` g_sigma_algebra_preimage X.
928928
Proof. exact: preimage_set_system_comp. Qed.
929929

930930
Lemma g_sigma_algebra_mapping_funrpos (X : {mfun T >-> R}) :
931-
g_sigma_algebra_mapping X^\+%R `<=` d.-measurable.
931+
g_sigma_algebra_preimage X^\+%R `<=` d.-measurable.
932932
Proof.
933933
by move=> A/= -[B mB] <-; have := measurable_funrpos (measurable_funP X); exact.
934934
Qed.
935935

936936
Lemma g_sigma_algebra_mapping_funrneg (X : {mfun T >-> R}) :
937-
g_sigma_algebra_mapping X^\-%R `<=` d.-measurable.
937+
g_sigma_algebra_preimage X^\-%R `<=` d.-measurable.
938938
Proof.
939939
by move=> A/= -[B mB] <-; have := measurable_funrneg (measurable_funP X); exact.
940940
Qed.
@@ -952,9 +952,9 @@ Lemma independent_RVs2_comp (X Y : {RV P >-> R}) (f g : {mfun R >-> R}) :
952952
Proof.
953953
move=> indeXY; split => /=.
954954
- move=> [] _ /= A.
955-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
955+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
956956
exact/measurableT_comp.
957-
+ by rewrite /g_sigma_algebra_mapping/= /preimage_set_system/= => -[B mB <-];
957+
+ by rewrite /g_sigma_algebra_preimage/= /preimage_set_system/= => -[B mB <-];
958958
exact/measurableT_comp.
959959
- move=> J _ E JE.
960960
apply indeXY => //= i iJ; have := JE _ iJ.
@@ -1163,23 +1163,23 @@ pose AY := dyadic_approx setT (EFin \o Y).
11631163
pose BX := integer_approx setT (EFin \o X).
11641164
pose BY := integer_approx setT (EFin \o Y).
11651165
have mA (Z : {RV P >-> R}) m k : (k < m * 2 ^ m)%N ->
1166-
g_sigma_algebra_mapping Z (dyadic_approx setT (EFin \o Z) m k).
1167-
move=> mk; rewrite /g_sigma_algebra_mapping /dyadic_approx mk setTI.
1166+
g_sigma_algebra_preimage Z (dyadic_approx setT (EFin \o Z) m k).
1167+
move=> mk; rewrite /g_sigma_algebra_preimage /dyadic_approx mk setTI.
11681168
rewrite /preimage_set_system/=; exists [set` dyadic_itv R m k] => //.
11691169
rewrite setTI/=; apply/seteqP; split => z/=.
11701170
by rewrite inE/= => Zz; exists (Z z).
11711171
by rewrite inE/= => -[r rmk] [<-].
11721172
have mB (Z : {RV P >-> R}) k :
1173-
g_sigma_algebra_mapping Z (integer_approx setT (EFin \o Z) k).
1174-
rewrite /g_sigma_algebra_mapping /integer_approx setTI /preimage_set_system/=.
1173+
g_sigma_algebra_preimage Z (integer_approx setT (EFin \o Z) k).
1174+
rewrite /g_sigma_algebra_preimage /integer_approx setTI /preimage_set_system/=.
11751175
by exists `[k%:R, +oo[%classic => //; rewrite setTI preimage_itvcy.
11761176
have m1A (Z : {RV P >-> R}) : forall k, (k < n * 2 ^ n)%N ->
11771177
measurable_fun setT
1178-
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_mappingType Z -> R).
1178+
(\1_(dyadic_approx setT (EFin \o Z) n k) : g_sigma_algebra_preimageType Z -> R).
11791179
move=> k kn.
1180-
exact/(@measurable_indicP _ (g_sigma_algebra_mappingType Z))/mA.
1180+
exact/(@measurable_indicP _ (g_sigma_algebra_preimageType Z))/mA.
11811181
rewrite !inE => /orP[|]/eqP->{i} //=.
1182-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType X) _ setT (X_ n).
1182+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType X) _ setT (X_ n).
11831183
rewrite nnsfun_approxE//.
11841184
apply: measurable_funD => //=.
11851185
apply: measurable_sum => //= k'; apply: measurable_funM => //.
@@ -1188,7 +1188,7 @@ rewrite !inE => /orP[|]/eqP->{i} //=.
11881188
by apply: measurable_indic; exact: mB.
11891189
rewrite /measurable_fun => /(_ measurableT _ (measurable_set1 x)).
11901190
by rewrite setTI.
1191-
have : @measurable_fun _ _ (g_sigma_algebra_mappingType Y) _ setT (Y_ n).
1191+
have : @measurable_fun _ _ (g_sigma_algebra_preimageType Y) _ setT (Y_ n).
11921192
rewrite nnsfun_approxE//.
11931193
apply: measurable_funD => //=.
11941194
apply: measurable_sum => //= k'; apply: measurable_funM => //.

0 commit comments

Comments
 (0)
Please sign in to comment.