Skip to content
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.

Commit 26b6b11

Browse files
mkerjeanaffeldt-aist
mkerjean
authored andcommittedJan 27, 2021
field lemmas
1 parent a6f244e commit 26b6b11

File tree

1 file changed

+12
-12
lines changed

1 file changed

+12
-12
lines changed
 

‎theories/normedtype.v

+12-12
Original file line numberDiff line numberDiff line change
@@ -3237,14 +3237,14 @@ Section LinearContinuousBounded.
32373237

32383238
Variables (R : numFieldType) (V W : normedModType R).
32393239

3240-
Lemma linear_boundedP (f : {linear V -> W}) : bounded_on f (nbhs (0 : V)) <->
3240+
Lemma linear_boundedP (f : {linear V -> W}) : bounded_near f (nbhs (0 : V)) <->
32413241
\forall r \near +oo, forall x, `|f x| <= r * `|x|.
32423242
Proof.
32433243
split=> [|/pinfty_ex_gt0 [r r0 Bf]]; last first.
32443244
apply/ex_bound; exists r; apply/nbhs_ballP; exists 1 => // x.
32453245
rewrite -ball_normE //= sub0r normrN -(gtr_pmulr _ r0) => /ltW.
32463246
exact/le_trans/Bf.
3247-
rewrite /bounded_on => /pinfty_ex_gt0 [M M0 /nbhs_ballP [_/posnumP[e] efM]].
3247+
rewrite /bounded_near => /pinfty_ex_gt0 [M M0 /nbhs_ballP [_/posnumP[e] efM]].
32483248
near (nbhs' 0 : set (set R^o)) => y; near=> r => x.
32493249
have [->|x0] := eqVneq x 0; first by rewrite linear0 !normr0 mulr0.
32503250
rewrite -ler_pdivr_mulr ?normr_gt0// -[ `|x|]normr_id mulrC.
@@ -3253,13 +3253,13 @@ rewrite -(ler_pmul2l y_gt0) -normfV -!normmZ scalerA -linearZ.
32533253
rewrite (le_trans (efM _ _)) //; last first.
32543254
rewrite -ler_pdivr_mull //; near: r; apply: nbhs_pinfty_ge_real.
32553255
by rewrite rpredM// ?ger0_real ?invr_ge0// ltW.
3256-
rewrite -ball_normE/= sub0r normrN normmZ normrM normrV ?(unitfE,normr_eq0)//.
3257-
rewrite normr_id -mulrA mulVr ?(unitfE,normr_eq0)// mulr1; near: y.
3256+
rewrite -ball_normE/= sub0r normrN normmZ normrM normfV //.
3257+
rewrite normr_id -mulrA mulVf ?normr_eq0 // mulr1; near: y.
32583258
by apply/nbhs_ballP; exists e%:num=> // z; rewrite -ball_normE /= sub0r normrN.
32593259
Grab Existential Variables. all: end_near. Qed.
32603260

32613261
Lemma linear_continuous0 (f : {linear V -> W}) :
3262-
{for 0, continuous f} -> bounded_on f (nbhs (0 : V)).
3262+
{for 0, continuous f} -> bounded_near f (nbhs (0 : V)).
32633263
Proof.
32643264
move=> /cvg_ballP/(_ _ ltr01); rewrite linear0 nearE => /nbhs_ex[e ef1].
32653265
apply/linear_boundedP; near=> d; move=> x.
@@ -3268,18 +3268,18 @@ have d0 : 0 < d.
32683268
by near: d; exists 1; rewrite real1; split => // r; apply le_lt_trans.
32693269
pose dx := d * `|x|; have dx0 : 0 < dx by rewrite mulr_gt0 // normr_gt0.
32703270
suff : `| f (dx^-1 *: x) | < 1.
3271-
rewrite linearZ normmZ normrV ?(unitfE,gt_eqF)//.
3271+
rewrite linearZ normmZ normfV ?gt_eqF //.
32723272
by rewrite ltr_pdivr_mull ?(normr_gt0,gt_eqF)// mulr1 gtr0_norm// => /ltW.
32733273
suff /ef1 : ball 0 e%:num (dx^-1 *: x) by rewrite -ball_normE /= sub0r normrN.
3274-
rewrite -ball_normE /ball_ /= sub0r normrN normmZ normrV ?(unitfE,gt_eqF)//.
3275-
rewrite normrM normr_id (gtr0_norm d0) invrM ?(unitfE,normr_eq0,gt_eqF)//.
3276-
rewrite mulrAC mulVr ?(unitfE,normr_eq0)// ltr_pdivr_mulr //.
3274+
rewrite -ball_normE /ball_ /= sub0r normrN normmZ normfV ?gt_eqF //.
3275+
rewrite normrM normr_id (gtr0_norm d0) invfM ?(normr_eq0,gt_eqF)//.
3276+
rewrite mulrAC -mulrA mulfV ?normr_eq0 // mulr1 -div1r ltr_pdivr_mulr //.
32773277
near: d; exists e%:num^-1; rewrite realE invr_ge0 posnum_ge0; split => // r.
32783278
by rewrite -ltr_pdivr_mull ?mulr1.
32793279
Grab Existential Variables. by end_near. Qed.
32803280

32813281
Lemma linear_bounded0 (f : {linear V -> W}) :
3282-
bounded_on f (nbhs (0 : V)) -> {for 0, continuous f}.
3282+
bounded_near f (nbhs (0 : V)) -> {for 0, continuous f}.
32833283
Proof.
32843284
move=> /linear_boundedP [y [yreal fr]]; near (@pinfty_nbhs R) => r.
32853285
have r0 : 0 < r.
@@ -3311,15 +3311,15 @@ by apply le_lt_trans; rewrite ler_addl.
33113311
Grab Existential Variables. by end_near. Qed.
33123312

33133313
Lemma linear_bounded_continuous (f : {linear V -> W}) :
3314-
bounded_on f (nbhs (0 : V)) <-> continuous f.
3314+
bounded_near f (nbhs (0 : V)) <-> continuous f.
33153315
Proof.
33163316
split=> [/linear_bounded0|/(_ 0)/linear_continuous0//].
33173317
exact: continuousfor0_continuous.
33183318
Qed.
33193319

33203320
Lemma bounded_funP (f : {linear V -> W}) :
33213321
(forall r, exists M, forall x, `|x| <= r -> `|f x| <= M) <->
3322-
bounded_on f (nbhs (0 : V)).
3322+
bounded_near f (nbhs (0 : V)).
33233323
Proof.
33243324
split => [/(_ 1) [M Bf]|/linear_boundedP fr y].
33253325
apply/ex_bound; exists M; apply/nbhs_ballP; exists 1 => // x.

0 commit comments

Comments
 (0)
Please sign in to comment.