@@ -3237,14 +3237,14 @@ Section LinearContinuousBounded.
3237
3237
3238
3238
Variables (R : numFieldType) (V W : normedModType R).
3239
3239
3240
- Lemma linear_boundedP (f : {linear V -> W}) : bounded_on f (nbhs (0 : V)) <->
3240
+ Lemma linear_boundedP (f : {linear V -> W}) : bounded_near f (nbhs (0 : V)) <->
3241
3241
\forall r \near +oo, forall x, `|f x| <= r * `|x|.
3242
3242
Proof .
3243
3243
split=> [|/pinfty_ex_gt0 [r r0 Bf]]; last first.
3244
3244
apply/ex_bound; exists r; apply/nbhs_ballP; exists 1 => // x.
3245
3245
rewrite -ball_normE //= sub0r normrN -(gtr_pmulr _ r0) => /ltW.
3246
3246
exact/le_trans/Bf.
3247
- rewrite /bounded_on => /pinfty_ex_gt0 [M M0 /nbhs_ballP [_/posnumP[e] efM]].
3247
+ rewrite /bounded_near => /pinfty_ex_gt0 [M M0 /nbhs_ballP [_/posnumP[e] efM]].
3248
3248
near (nbhs' 0 : set (set R^o)) => y; near=> r => x.
3249
3249
have [->|x0] := eqVneq x 0; first by rewrite linear0 !normr0 mulr0.
3250
3250
rewrite -ler_pdivr_mulr ?normr_gt0// -[ `|x|]normr_id mulrC.
@@ -3253,13 +3253,13 @@ rewrite -(ler_pmul2l y_gt0) -normfV -!normmZ scalerA -linearZ.
3253
3253
rewrite (le_trans (efM _ _)) //; last first.
3254
3254
rewrite -ler_pdivr_mull //; near: r; apply: nbhs_pinfty_ge_real.
3255
3255
by rewrite rpredM// ?ger0_real ?invr_ge0// ltW.
3256
- rewrite -ball_normE/= sub0r normrN normmZ normrM normrV ?(unitfE,normr_eq0) //.
3257
- rewrite normr_id -mulrA mulVr ?(unitfE, normr_eq0) // mulr1; near: y.
3256
+ rewrite -ball_normE/= sub0r normrN normmZ normrM normfV //.
3257
+ rewrite normr_id -mulrA mulVf ? normr_eq0 // mulr1; near: y.
3258
3258
by apply/nbhs_ballP; exists e%:num=> // z; rewrite -ball_normE /= sub0r normrN.
3259
3259
Grab Existential Variables. all: end_near. Qed .
3260
3260
3261
3261
Lemma linear_continuous0 (f : {linear V -> W}) :
3262
- {for 0, continuous f} -> bounded_on f (nbhs (0 : V)).
3262
+ {for 0, continuous f} -> bounded_near f (nbhs (0 : V)).
3263
3263
Proof .
3264
3264
move=> /cvg_ballP/(_ _ ltr01); rewrite linear0 nearE => /nbhs_ex[e ef1].
3265
3265
apply/linear_boundedP; near=> d; move=> x.
@@ -3268,18 +3268,18 @@ have d0 : 0 < d.
3268
3268
by near: d; exists 1; rewrite real1; split => // r; apply le_lt_trans.
3269
3269
pose dx := d * `|x|; have dx0 : 0 < dx by rewrite mulr_gt0 // normr_gt0.
3270
3270
suff : `| f (dx^-1 *: x) | < 1.
3271
- rewrite linearZ normmZ normrV ?(unitfE, gt_eqF) //.
3271
+ rewrite linearZ normmZ normfV ? gt_eqF //.
3272
3272
by rewrite ltr_pdivr_mull ?(normr_gt0,gt_eqF)// mulr1 gtr0_norm// => /ltW.
3273
3273
suff /ef1 : ball 0 e%:num (dx^-1 *: x) by rewrite -ball_normE /= sub0r normrN.
3274
- rewrite -ball_normE /ball_ /= sub0r normrN normmZ normrV ?(unitfE, gt_eqF) //.
3275
- rewrite normrM normr_id (gtr0_norm d0) invrM ?(unitfE, normr_eq0,gt_eqF)//.
3276
- rewrite mulrAC mulVr ?(unitfE, normr_eq0)// ltr_pdivr_mulr //.
3274
+ rewrite -ball_normE /ball_ /= sub0r normrN normmZ normfV ? gt_eqF //.
3275
+ rewrite normrM normr_id (gtr0_norm d0) invfM ?(normr_eq0,gt_eqF)//.
3276
+ rewrite mulrAC -mulrA mulfV ? normr_eq0 // mulr1 -div1r ltr_pdivr_mulr //.
3277
3277
near: d; exists e%:num^-1; rewrite realE invr_ge0 posnum_ge0; split => // r.
3278
3278
by rewrite -ltr_pdivr_mull ?mulr1.
3279
3279
Grab Existential Variables. by end_near. Qed .
3280
3280
3281
3281
Lemma linear_bounded0 (f : {linear V -> W}) :
3282
- bounded_on f (nbhs (0 : V)) -> {for 0, continuous f}.
3282
+ bounded_near f (nbhs (0 : V)) -> {for 0, continuous f}.
3283
3283
Proof .
3284
3284
move=> /linear_boundedP [y [yreal fr]]; near (@pinfty_nbhs R) => r.
3285
3285
have r0 : 0 < r.
@@ -3311,15 +3311,15 @@ by apply le_lt_trans; rewrite ler_addl.
3311
3311
Grab Existential Variables. by end_near. Qed .
3312
3312
3313
3313
Lemma linear_bounded_continuous (f : {linear V -> W}) :
3314
- bounded_on f (nbhs (0 : V)) <-> continuous f.
3314
+ bounded_near f (nbhs (0 : V)) <-> continuous f.
3315
3315
Proof .
3316
3316
split=> [/linear_bounded0|/(_ 0)/linear_continuous0//].
3317
3317
exact: continuousfor0_continuous.
3318
3318
Qed .
3319
3319
3320
3320
Lemma bounded_funP (f : {linear V -> W}) :
3321
3321
(forall r, exists M, forall x, `|x| <= r -> `|f x| <= M) <->
3322
- bounded_on f (nbhs (0 : V)).
3322
+ bounded_near f (nbhs (0 : V)).
3323
3323
Proof .
3324
3324
split => [/(_ 1) [M Bf]|/linear_boundedP fr y].
3325
3325
apply/ex_bound; exists M; apply/nbhs_ballP; exists 1 => // x.
0 commit comments