Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

candicate lemma fors a PR #1530

Open
affeldt-aist opened this issue Mar 17, 2025 · 0 comments
Open

candicate lemma fors a PR #1530

affeldt-aist opened this issue Mar 17, 2025 · 0 comments
Labels
wish 🙏 Request for a specific mathematical result
Milestone

Comments

@affeldt-aist
Copy link
Member

They are coming from the PR on the sampling lemma PR #1240 @t6s

Lemma bounded_image (T : Type) (K : numFieldType)
  (V : pseudoMetricNormedZmodType K) (E : T -> V) (A : set T) :
  [bounded y | y in E @` A] = [bounded E x | x in A].
Proof.
rewrite /bounded_near !nearE.
congr (+oo _); apply: funext=> M.
apply: propext; split => /=.
  by move=> + x Ax => /(_ (E x)); apply; exists x.
by move=> H x [] y Ay <-; exact: H.
Qed.

Lemma finite_bounded (K : realFieldType) (V : pseudoMetricNormedZmodType K)
  (A : set V) : finite_set A -> bounded_set A.
Proof.
move=> fA.
exists (\big[Order.max/0]_(y <- fset_set A) normr y).
split=> //.
  apply: (big_ind (fun x => x \is Num.real))=> //.
  by move=> *; exact: max_real.
move=> x ltx v Av /=.
apply/ltW/(le_lt_trans _ ltx)/le_bigmax_seq=> //.
by rewrite in_fset_set// inE.
Qed.

Arguments card_le_finite [T U].
(* naming inconsistency: there is also `sub_finite_set`:
   sub_finite_set :
     forall [T : Type] [A B : set T], A `<=` B -> finite_set B -> finite_set A *)

Lemma finite_range_comp (T0 T1 T2 : Type) (f : T0 -> T1) (g : T1 -> T2) :
  finite_set (range f) \/ finite_set (range g) -> finite_set (range (g \o f)).
Proof.
rewrite -(image_comp f g).
case.
  move=> cf; apply: (card_le_finite _ (range f))=> //.
  exact: card_image_le.
move=> cg; apply: (card_le_finite _ (range g))=> //.
exact/subset_card_le/image_subset.
Qed.

Arguments finite_range_comp [T0 T1 T2].

(* generalizations with an additional predicate (m <= i)%N as in big_geq_mkord *)
Lemma lee_sum_fset_nat_geq (R : realDomainType) (f : sequence \bar R)
  (F : {fset nat}) (m n : nat) (P : pred nat) :
  (forall i : nat, P i -> (0%R <= f i)%E) ->
  [set` F] `<=` `I_n ->
  ((\sum_(i <- F | P i && (m <= i)%N) f i)%R
   <= (\sum_(m <= i < n | P i) f i)%R)%E.
Proof.
move=> f0 Fn.
rewrite big_geq_mkord/= -(big_mkord (fun i => P i && (m <= i)%N)).
apply: lee_sum_fset_nat=> //.
by move=> ? /andP [] *; exact: f0.
Qed.
Arguments lee_sum_fset_nat_geq {R f} F m n P.

Lemma lee_sum_fset_lim_geq (R : realType) (f : sequence \bar R)
  (F : {fset nat}) m (P : pred nat) :
  (forall i : nat, P i -> (0%R <= f i)%E) ->
  ((\sum_(i <- F | P i && (m <= i)%N) f i)%R
   <= \big[+%R/0%R]_(m <= i <oo | P i) f i)%E.
Proof.
move=> f0; pose n := (\max_(k <- F) k).+1.
rewrite (le_trans (lee_sum_fset_nat_geq F m n _ _ _))//; last first.
  by apply: nneseries_lim_ge => // k _; exact: f0.
move=> k /= kF; rewrite /n big_seq_fsetE/=.
by rewrite -[k]/(val [`kF]%fset) ltnS leq_bigmax.
Qed.
Arguments lee_sum_fset_lim_geq {R f} F m P.

Lemma nneseries_esum_geq (R : realType) (a : nat -> \bar R) m (P : pred nat) :
  (forall n : nat, P n -> (0%R <= a n)%E) ->
  \big[+%R/0]_(m <= i <oo | P i) a i = \esum_(i in [set x | P x && (m <= x)%N]) a i.
Proof.
move=> a0; apply/eqP; rewrite eq_le; apply/andP; split.
  apply: lime_le.
    by apply: is_cvg_nneseries_cond => n _; exact: a0.
  apply: nearW=> n.
  apply: ereal_sup_ubound; exists [set` [fset val i | i in 'I_n & P i && (m <= i)%N]%fset].
    split; first exact: finite_fset.
    by move=> /= k /imfsetP[/= i]; rewrite inE => + ->.
  rewrite fsbig_finite//= set_fsetK big_imfset/=; last first.
    by move=> ? ? ? ? /val_inj.
  by rewrite big_filter big_enum_cond/= big_geq_mkord.
apply: ub_ereal_sup => _ [/= F [finF PF] <-].
rewrite fsbig_finite//= -(big_rmcond_in (fun i=> P i && (m <= i)%N))/=.
  exact: lee_sum_fset_lim_geq.
by move=> k; rewrite in_fset_set// inE => /PF ->.
Qed.

Lemma nneseriesID (R : realType) m (a P : pred nat) (f : nat -> \bar R):
  (forall k : nat, P k -> (0%R <= f k)%E) ->
  \big[+%R/0]_(m <= k <oo | P k) f k =
  (\big[+%R/0%R]_(m <= k <oo | P k && a k) f k)%E
  + (\big[+%R/0%R]_(m <= k <oo | P k && ~~ a k) f k)%E.
Proof.
move=> nn.
rewrite nneseries_esum_geq//.
rewrite (esumID a)/=; last by move=> ? /andP [] *; exact: nn.
have->: [set x | P x && (m <= x)%N] `&` (fun x : nat => a x) =
        [set x | (P x && a x) && (m <= x)%N].
  by apply: funext=> x /=; rewrite (propext (rwP andP)) andbAC.
have->: [set x | P x && (m <= x)%N] `&` ~` (fun x : nat => a x) =
        [set x | (P x && ~~ a x) && (m <= x)%N].
  apply: funext=> x /=.
  by rewrite (propext (rwP negP)) (propext (rwP andP)) andbAC.
by rewrite -!nneseries_esum_geq//; move=> ? /andP [] *; exact: nn.
Qed.
@affeldt-aist affeldt-aist added the wish 🙏 Request for a specific mathematical result label Mar 17, 2025
@affeldt-aist affeldt-aist added this to the 1.11.0 milestone Mar 17, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
wish 🙏 Request for a specific mathematical result
Projects
None yet
Development

No branches or pull requests

1 participant