|
3 | 3 | import plotly.express as px
|
4 | 4 | import numpy as np
|
5 | 5 | import pandas as pd
|
| 6 | +from random import sample |
6 | 7 |
|
7 | 8 | pd.options.mode.chained_assignment = None
|
8 | 9 | import plotly.graph_objects as go
|
@@ -37,21 +38,21 @@ def main():
|
37 | 38 | score12 = dict_res.get("mean_midfield")
|
38 | 39 |
|
39 | 40 |
|
40 |
| - labels = ['score', 'nic'] |
41 |
| - values = [score12, 100-score12] |
42 |
| - colors = ['green', 'white'] |
43 |
| - |
44 |
| - # Use `hole` to create a donut-like pie chart |
45 |
| - fig = go.Figure(data=[go.Pie(labels=labels, |
46 |
| - values=values, |
47 |
| - hole=.7, |
48 |
| - showlegend=False)]) |
49 |
| - fig.update_traces(marker=dict(colors=colors)) |
50 |
| - fig.update_traces(textinfo='none') |
51 |
| - fig.add_annotation(text = str(score12), |
52 |
| - font=dict(size=120,family='Verdana',color='black'), |
53 |
| - showarrow=False) |
54 |
| - fig.show() |
| 41 | + # labels = ['score', 'nic'] |
| 42 | + # values = [score12, 100-score12] |
| 43 | + # colors = ['green', 'white'] |
| 44 | + # |
| 45 | + # # Use `hole` to create a donut-like pie chart |
| 46 | + # fig = go.Figure(data=[go.Pie(labels=labels, |
| 47 | + # values=values, |
| 48 | + # hole=.7, |
| 49 | + # showlegend=False)]) |
| 50 | + # fig.update_traces(marker=dict(colors=colors)) |
| 51 | + # fig.update_traces(textinfo='none') |
| 52 | + # fig.add_annotation(text = str(score12), |
| 53 | + # font=dict(size=120,family='Verdana',color='black'), |
| 54 | + # showarrow=False) |
| 55 | + # fig.show() |
55 | 56 |
|
56 | 57 |
|
57 | 58 |
|
@@ -141,8 +142,30 @@ def analyze_team(team_name):
|
141 | 142 | "last_game_goals_stracone": last_game_goals_stracone}
|
142 | 143 |
|
143 | 144 |
|
| 145 | + |
144 | 146 | return result_tablica
|
145 | 147 |
|
| 148 | +def info_last_game(team_name): |
| 149 | + df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv") |
| 150 | + df_team = df[(df["home_team"] == team_name) | (df["away_team"] == team_name)] |
| 151 | + last_game = df_team.tail(1) |
| 152 | + |
| 153 | + |
| 154 | + result = {"home_team":last_game["home_team"].values[0], |
| 155 | + "away_team":last_game["away_team"].values[0], |
| 156 | + "home_team_score": last_game["home_team_score"].values[0], |
| 157 | + "away_team_score":last_game["away_team_score"].values[0], |
| 158 | + 'home_team_mean_offense_score': last_game['home_team_mean_offense_score'].values[0], |
| 159 | + 'away_team_mean_offense_score': last_game['away_team_mean_offense_score'].values[0], |
| 160 | + 'home_team_mean_defense_score': last_game['home_team_mean_defense_score'].values[0], |
| 161 | + 'away_team_mean_defense_score': last_game['away_team_mean_defense_score'].values[0], |
| 162 | + 'date': last_game['date'].values[0] |
| 163 | + } |
| 164 | + return result |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | + |
146 | 169 |
|
147 | 170 | def analyze_data():
|
148 | 171 | df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv")
|
@@ -290,8 +313,25 @@ def find_last_game(team_1, team_2):
|
290 | 313 | return last_away
|
291 | 314 | return last_home
|
292 | 315 |
|
| 316 | +def analyze_mean_offense_score(): |
| 317 | + df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv") |
| 318 | + |
| 319 | + |
| 320 | + df_mean_off_teams = df.groupby(['home_team'])['home_team_mean_offense_score'].mean().reset_index() |
| 321 | + df_mean_off_teams.sort_values(by = ['home_team_mean_offense_score'], inplace=True, ascending=False) |
| 322 | + df_mean_off_teams.dropna(inplace=True) |
| 323 | + |
| 324 | + lista_kraje = df_mean_off_teams['home_team'].tolist() |
| 325 | + lista_scores = df_mean_off_teams['home_team_mean_offense_score'].tolist() |
| 326 | + |
| 327 | + |
| 328 | + randomowe_indexy = sample(range(0,115),10) |
| 329 | + randomowe1 = [[lista_kraje[x] for x in randomowe_indexy],[lista_scores[x] for x in randomowe_indexy]] |
| 330 | + najlepsze1 = [lista_kraje[:10],lista_scores[:10]] |
| 331 | + |
| 332 | + return randomowe1 |
293 | 333 |
|
294 | 334 |
|
295 | 335 |
|
296 | 336 | if __name__ == '__main__':
|
297 |
| - main() |
| 337 | + analyze_mean_offense_score() |
0 commit comments