Skip to content

Commit 989b9e7

Browse files
committed
updated mean offense score graph
1 parent 900fcf1 commit 989b9e7

File tree

2 files changed

+263
-60
lines changed

2 files changed

+263
-60
lines changed

dash_2.py

+56-16
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,7 @@
33
import plotly.express as px
44
import numpy as np
55
import pandas as pd
6+
from random import sample
67

78
pd.options.mode.chained_assignment = None
89
import plotly.graph_objects as go
@@ -37,21 +38,21 @@ def main():
3738
score12 = dict_res.get("mean_midfield")
3839

3940

40-
labels = ['score', 'nic']
41-
values = [score12, 100-score12]
42-
colors = ['green', 'white']
43-
44-
# Use `hole` to create a donut-like pie chart
45-
fig = go.Figure(data=[go.Pie(labels=labels,
46-
values=values,
47-
hole=.7,
48-
showlegend=False)])
49-
fig.update_traces(marker=dict(colors=colors))
50-
fig.update_traces(textinfo='none')
51-
fig.add_annotation(text = str(score12),
52-
font=dict(size=120,family='Verdana',color='black'),
53-
showarrow=False)
54-
fig.show()
41+
# labels = ['score', 'nic']
42+
# values = [score12, 100-score12]
43+
# colors = ['green', 'white']
44+
#
45+
# # Use `hole` to create a donut-like pie chart
46+
# fig = go.Figure(data=[go.Pie(labels=labels,
47+
# values=values,
48+
# hole=.7,
49+
# showlegend=False)])
50+
# fig.update_traces(marker=dict(colors=colors))
51+
# fig.update_traces(textinfo='none')
52+
# fig.add_annotation(text = str(score12),
53+
# font=dict(size=120,family='Verdana',color='black'),
54+
# showarrow=False)
55+
# fig.show()
5556

5657

5758

@@ -141,8 +142,30 @@ def analyze_team(team_name):
141142
"last_game_goals_stracone": last_game_goals_stracone}
142143

143144

145+
144146
return result_tablica
145147

148+
def info_last_game(team_name):
149+
df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv")
150+
df_team = df[(df["home_team"] == team_name) | (df["away_team"] == team_name)]
151+
last_game = df_team.tail(1)
152+
153+
154+
result = {"home_team":last_game["home_team"].values[0],
155+
"away_team":last_game["away_team"].values[0],
156+
"home_team_score": last_game["home_team_score"].values[0],
157+
"away_team_score":last_game["away_team_score"].values[0],
158+
'home_team_mean_offense_score': last_game['home_team_mean_offense_score'].values[0],
159+
'away_team_mean_offense_score': last_game['away_team_mean_offense_score'].values[0],
160+
'home_team_mean_defense_score': last_game['home_team_mean_defense_score'].values[0],
161+
'away_team_mean_defense_score': last_game['away_team_mean_defense_score'].values[0],
162+
'date': last_game['date'].values[0]
163+
}
164+
return result
165+
166+
167+
168+
146169

147170
def analyze_data():
148171
df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv")
@@ -290,8 +313,25 @@ def find_last_game(team_1, team_2):
290313
return last_away
291314
return last_home
292315

316+
def analyze_mean_offense_score():
317+
df = pd.read_csv("C:/Users/Uzytkownik/PycharmProjects/dash_lib/international_matches.csv")
318+
319+
320+
df_mean_off_teams = df.groupby(['home_team'])['home_team_mean_offense_score'].mean().reset_index()
321+
df_mean_off_teams.sort_values(by = ['home_team_mean_offense_score'], inplace=True, ascending=False)
322+
df_mean_off_teams.dropna(inplace=True)
323+
324+
lista_kraje = df_mean_off_teams['home_team'].tolist()
325+
lista_scores = df_mean_off_teams['home_team_mean_offense_score'].tolist()
326+
327+
328+
randomowe_indexy = sample(range(0,115),10)
329+
randomowe1 = [[lista_kraje[x] for x in randomowe_indexy],[lista_scores[x] for x in randomowe_indexy]]
330+
najlepsze1 = [lista_kraje[:10],lista_scores[:10]]
331+
332+
return randomowe1
293333

294334

295335

296336
if __name__ == '__main__':
297-
main()
337+
analyze_mean_offense_score()

0 commit comments

Comments
 (0)