-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathBasics.v
563 lines (424 loc) · 18.9 KB
/
Basics.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
(**********************************************************************)
(* Equations *)
(* Copyright (c) 2009-2021 Matthieu Sozeau <[email protected]> *)
(**********************************************************************)
(* This file is distributed under the terms of the *)
(* GNU Lesser General Public License Version 2.1 *)
(**********************************************************************)
(** printing elimination %\coqdoctac{elimination}% *)
(** printing noconf %\coqdoctac{noconf}% *)
(** printing simp %\coqdoctac{simp}% *)
(** printing by %\coqdockw{by}% *)
(** printing rec %\coqdockw{rec}% *)
(** printing Coq %\Coq{}% *)
(** printing funelim %\coqdoctac{funelim}% *)
(** printing Derive %\coqdockw{Derive}% *)
(** printing Signature %\coqdocclass{Signature}% *)
(** printing Subterm %\coqdocclass{Subterm}% *)
(** printing NoConfusion %\coqdocclass{NoConfusion}% *)
(** * Basic examples
This file containts various examples demonstrating the features of Equations.
If running this interactively you can ignore the printing
and hide directives which are just used to instruct coqdoc. *)
Require Import Program Bvector List Relations.
From Equations Require Import Equations Signature.
Require Import Utf8.
Set Keyed Unification.
(** Just pattern-matching *)
Equations neg (b : bool) : bool :=
neg true := false ;
neg false := true.
(** A proof using the functional elimination principle derived for [neg]. *)
Lemma neg_inv : forall b, neg (neg b) = b.
Proof. intros b. funelim (neg b); auto. Qed.
Module Obligations.
(** One can use equations similarly to Program or the [refine] tactic,
putting underscores [_] for subgoals to be filled separately using
the tactic mode. *)
Equations? f (n : nat) : nat :=
f 0 := 42 ;
f (S m) with f m :=
{
f (S m) IH := _
}.
Proof. intros. exact IH. Defined.
End Obligations.
(** Structural recursion and use of the [with] feature to look at the result
of a recursive call (here with a trivial pattern-matching. *)
Import List.
Equations app_with {A} (l l' : list A) : list A :=
app_with nil l := l ;
app_with (cons a v) l with app_with v l => {
| vl := cons a vl }.
(** Structurally recursive function on natural numbers, with inspection of a recursive
call result. We use [auto with arith] to discharge the obligations. *)
Obligation Tactic := program_simpl ; try CoreTactics.solve_wf ; auto with arith.
Equations equal (n m : nat) : { n = m } + { n <> m } :=
equal O O := in_left ;
equal (S n) (S m) with equal n m => {
equal (S n) (S ?(n)) (left eq_refl) := left eq_refl ;
equal (S n) (S m) (right p) := in_right } ;
equal x y := in_right.
(** Pattern-matching on the indexed equality type. *)
Equations eq_sym {A} (x y : A) (H : x = y) : y = x :=
eq_sym x _ eq_refl := eq_refl.
Equations eq_trans {A} (x y z : A) (p : x = y) (q : y = z) : x = z :=
eq_trans x _ _ eq_refl eq_refl := eq_refl.
Notation vector := Vector.t.
Derive Signature for eq vector.
Module KAxiom.
(** By default we disallow the K axiom, but it can be set. *)
(** In this case the following definition fails as [K] is not derivable on type [A]. *)
Fail Equations K {A} (x : A) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H :=
K x P p eq_refl := p.
Set Equations With UIP.
Axiom uip : forall A, UIP A.
Local Existing Instance uip.
Equations K_ax {A} (x : A) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H :=
K_ax x P p eq_refl := p.
(** The definition is however using an axiom equivalent to [K], so it cannot reduce
on closed or open terms. *)
End KAxiom.
Module KDec.
(** However, types enjoying a provable instance of the [K] principle are fine using the [With UIP]
option. Note that the following definition does *not* reduce according to its single clause
on open terms, it instead computes using the decidable equality proof on natural numbers. *)
Set Equations With UIP.
Fail Equations K {A} (x : A) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H :=
K x P p eq_refl := p.
Equations K (x : nat) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H :=
K x P p eq_refl := p.
Print Assumptions K. (* Closed under the global context *)
End KDec.
(** The [with] construct allows to pattern-match on an intermediary computation.
The "|" syntax provides a shortcut to repeating the previous patterns. *)
Section FilterDef.
Context {A} (p : A -> bool).
Equations filter (l : list A) : list A :=
filter nil := nil ;
filter (cons a l) with p a => {
| true := a :: filter l ;
| false := filter l }.
(** By default, equations makes definitions opaque after definition,
to avoid spurious unfoldings, but this can be reverted on a case by case
basis, or using the global [Set Equations Transparent] option. *)
Global Transparent filter.
End FilterDef.
(** We define inclusion of a list in another one, to specify the behavior of [filter] *)
Inductive incl {A} : relation (list A) :=
stop : incl nil nil
| keep {x : A} {xs ys : list A} : incl xs ys -> incl (x :: xs) (x :: ys)
| skip {x : A} {xs ys : list A} : incl xs ys -> incl (xs) (x :: ys).
(** Using [with] again, we can produce a proof that the filtered list is a
sublist of the original list. *)
Equations sublist {A} (p : A -> bool) (xs : list A) : incl (filter p xs) xs :=
sublist p nil := stop ;
sublist p (cons x xs) with p x := {
| true := keep (sublist p xs) ;
| false := skip (sublist p xs) }.
(** Well-founded definitions: *)
Require Import Arith Wf_nat.
(** One can declare new well-founded relations using instances of the [WellFounded] typeclass. *)
#[local] Instance wf_nat : WellFounded lt := lt_wf.
#[local] Hint Resolve Nat.lt_succ_diag_r : lt.
(** The [by wf n lt] annotation indicates the kind of well-founded recursion we want. *)
Equations testn (n : nat) : nat by wf n lt :=
testn 0 := 0 ;
testn (S n) with testn n => {
| 0 := S 0 ;
| (S n') := S n' }.
(** Notations for vectors *)
Equations Derive NoConfusion NoConfusionHom for vector.
Arguments Vector.nil {A}.
Arguments Vector.cons {A} _ {n}.
Declare Scope vect_scope.
Notation " x |:| y " := (@Vector.cons _ x _ y) (at level 20, right associativity) : vect_scope.
Notation " x |: n :| y " := (@Vector.cons _ x n y) (at level 20, right associativity) : vect_scope.
Notation "[]v" := Vector.nil (at level 0) : vect_scope.
Local Open Scope vect_scope.
(** We can define functions by structural recursion on indexed datatypes like vectors. *)
Equations vapp {A} {n m} (v : vector A n) (w : vector A m) : vector A (n + m) :=
vapp []v w := w ;
vapp (Vector.cons a v) w := a |:| vapp v w.
(** We can also support well-founded recursion on indexed datatypes. *)
(** We show that decidable equality of the elements type implied decidable equality of vectors. *)
#[local] Instance vector_eqdec {A n} `(EqDec A) : EqDec (vector A n).
Proof. intros. intros x. induction x. left. now depelim y.
intro y; depelim y.
destruct (eq_dec h h0); subst.
destruct (IHx y). subst.
left; reflexivity.
right. intro. apply n0. noconf H0. constructor.
right. intro. apply n0. noconf H0. constructor.
Defined.
Print Assumptions vector_eqdec.
(** We automatically derive the signature and subterm relation for
vectors and prove it's well-foundedness. The signature provides
a [signature_pack] function to pack a vector with its index. The
well-founded relation is defined on the packed vector type. *)
Derive Subterm for vector.
(** The relation is actually called [t_subterm] as [vector] is just
a notation for [Vector.t]. *)
Section foo.
Context {A B : Type}.
(** We can use the packed relation to do well-founded recursion on the vector.
Note that we do a recursive call on a substerm of type [vector A n] which
must be shown smaller than a [vector A (S n)]. They are actually compared
at the packed type [{ n : nat & vector A n}]. *)
Equations unzip {n} (v : vector (A * B) n) : vector A n * vector B n
by wf (signature_pack v) (@t_subterm (A * B)) :=
unzip []v := ([]v, []v) ;
unzip (Vector.cons (x, y) v) with unzip v := {
| pair xs ys := (Vector.cons x xs, Vector.cons y ys) }.
End foo.
(** Playing with lists and functional induction, we define a tail-recursive version
of [rev] and show its equivalence with the "naïve" [rev]. *)
Equations app {A} (l l' : list A) : list A :=
app nil l := l;
app (cons a v) l := cons a (app v l).
Infix "++" := app (right associativity, at level 60) : list_scope.
Equations rev_acc {A} (l : list A) (acc : list A) : list A :=
rev_acc nil acc := acc;
rev_acc (cons a v) acc := rev_acc v (a :: acc).
Equations rev {A} (l : list A) : list A :=
rev nil := nil;
rev (cons a v) := rev v ++ (cons a nil).
Notation " [] " := List.nil.
Lemma app_nil : forall {A} (l : list A), l ++ [] = l.
Proof.
intros.
funelim (app l []); simpl. reflexivity.
now rewrite H.
Qed.
Lemma app_assoc : forall {A} (l l' l'' : list A), (l ++ l') ++ l'' = l ++ (l' ++ l'').
Proof. intros. revert l''.
funelim (l ++ l'); intros; simp app; trivial.
now rewrite H.
Qed.
Lemma rev_rev_acc : forall {A} (l : list A), rev_acc l [] = rev l.
Proof.
intros.
replace (rev l) with (rev l ++ []) by apply app_nil.
generalize (@nil A).
funelim (rev l). reflexivity.
intros l'. simp rev_acc; trivial. rewrite H.
rewrite app_assoc. reflexivity.
Qed.
#[local] Hint Rewrite @rev_rev_acc : rev_acc.
#[local] Hint Rewrite @app_nil @app_assoc : app.
Lemma rev_app : forall {A} (l l' : list A), rev (l ++ l') = rev l' ++ rev l.
Proof. intros. funelim (l ++ l'); simp rev app; trivial.
now (rewrite H, <- app_assoc).
Qed.
Equations zip' {A} (f : A -> A -> A) (l l' : list A) : list A :=
zip' f nil nil := nil ;
zip' f (cons a v) (cons b w) := cons (f a b) (zip' f v w) ;
zip' f x y := nil.
Equations zip'' {A} (f : A -> A -> A) (l l' : list A) (def : list A) : list A :=
zip'' f nil nil def := nil ;
zip'' f (cons a v) (cons b w) def := cons (f a b) (zip'' f v w def) ;
zip'' f nil (cons b w) def := def ;
zip'' f (cons a v) nil def := def.
Import Vector.
(** Vectors *)
Equations vector_append_one {A n} (v : vector A n) (a : A) : vector A (S n) :=
vector_append_one nil a := cons a nil;
vector_append_one (cons a' v) a := cons a' (vector_append_one v a).
Equations vrev {A n} (v : vector A n) : vector A n :=
vrev nil := nil;
vrev (cons a v) := vector_append_one (vrev v) a.
Definition cast_vector {A n m} (v : vector A n) (H : n = m) : vector A m.
intros; subst; assumption. Defined.
Equations vrev_acc {A n m} (v : vector A n) (w : vector A m) : vector A (n + m) :=
vrev_acc nil w := w;
vrev_acc (cons a v) w := cast_vector (vrev_acc v (cons a w)) _.
(* About vapp'. *)
Record vect {A} := mkVect { vect_len : nat; vect_vector : vector A vect_len }.
Coercion mkVect : vector >-> vect.
Derive NoConfusion for vect.
(** Splitting a vector into two parts. *)
Inductive Split {X : Type}{m n : nat} : vector X (m + n) -> Type :=
append : ∀ (xs : vector X m)(ys : vector X n), Split (vapp xs ys).
Arguments Split [ X ].
(** We split by well-founded recursion on the index [m] here. *)
Equations split {X : Type} {m n} (xs : vector X (m + n)) : Split m n xs by wf m :=
split (m:=O) xs := append nil xs ;
split (m:=S m) (cons x xs) with split xs => {
| append xs' ys' := append (cons x xs') ys' }.
(** The [split] and [vapp] functions are inverses. *)
Lemma split_vapp : ∀ (X : Type) m n (v : vector X m) (w : vector X n),
let 'append v' w' := split (vapp v w) in
v = v' /\ w = w'.
Proof.
intros.
funelim (vapp v w).
destruct split. depelim xs; intuition.
simp split in *. destruct split. simpl.
intuition congruence.
Qed.
(* Eval compute in @zip''. *)
Require Import Bvector.
(** This function can also be defined by structural recursion on [m]. *)
Equations split_struct {X : Type} {m n} (xs : vector X (m + n)) : Split m n xs :=
split_struct (m:=0) xs := append nil xs ;
split_struct (m:=(S m)) (cons x xs) with split_struct xs => {
split_struct (m:=(S m)) (cons x xs) (append xs' ys') := append (cons x xs') ys' }.
Lemma split_struct_vapp : ∀ (X : Type) m n (v : vector X m) (w : vector X n),
let 'append v' w' := split_struct (vapp v w) in
v = v' /\ w = w'.
Proof.
intros. funelim (vapp v w); simp split_struct in *.
destruct split_struct. depelim xs; intuition.
destruct (split_struct (vapp v _)); simpl.
intuition congruence.
Qed.
(** Taking the head of a non-empty vector. *)
Equations vhead {A n} (v : vector A (S n)) : A :=
vhead (cons a v) := a.
(** Mapping over a vector. *)
Equations vmap' {A B} (f : A -> B) {n} (v : vector A n) : vector B n :=
vmap' f nil := nil ;
vmap' f (cons a v) := cons (f a) (vmap' f v).
#[local] Hint Resolve Nat.lt_succ_diag_r : subterm_relation.
Transparent vmap'.
(** The same, using well-founded recursion on [n]. *)
Equations vmap {A B} (f : A -> B) {n} (v : vector A n) : vector B n by wf n :=
vmap f (n:=?(O)) nil := nil ;
vmap f (cons a v) := cons (f a) (vmap f v).
Transparent vmap.
Eval compute in (vmap' id (@nil nat)).
Eval compute in (vmap' id (@cons nat 2 _ nil)).
(** The image of a function. *)
Section Image.
Context {S T : Type}.
Variable f : S -> T.
Inductive Imf : T -> Type := imf (s : S) : Imf (f s).
(** Here [(f s)] is innaccessible. *)
Equations inv (t : T) (im : Imf t) : S :=
inv ?(f s) (imf s) := s.
End Image.
(** Working with a universe of types with an interpretation function. *)
Section Univ.
Inductive univ : Set :=
| ubool | unat | uarrow (from:univ) (to:univ).
Equations interp (u : univ) : Set :=
interp ubool := bool; interp unat := nat;
interp (uarrow from to) := interp from -> interp to.
Transparent interp.
Definition interp' := Eval compute in @interp.
Equations foo (u : univ) (el : interp' u) : interp' u :=
foo ubool true := false ;
foo ubool false := true ;
foo unat t := t ;
foo (uarrow from to) f := id ∘ f.
Transparent foo.
(* Eval lazy beta delta [ foo foo_obligation_1 foo_obligation_2 ] iota zeta in foo. *)
End Univ.
Equations vlast {A} {n} (v : vector A (S n)) : A by struct v :=
vlast (@cons a O _) := a ;
vlast (@cons a (S n) v) := vlast v.
Transparent vlast.
(** The parity predicate embeds a divisor of n or n-1 *)
Inductive Parity : nat -> Set :=
| even : forall n, Parity (mult 2 n)
| odd : forall n, Parity (S (mult 2 n)).
(* Eval compute in (fun n => mult 2 (S n)). *)
Definition cast {A B : Type} (a : A) (p : A = B) : B.
intros. subst. exact a.
Defined.
Equations parity (n : nat) : Parity n :=
parity O := even 0 ;
parity (S n) with parity n => {
parity (S ?(mult 2 k)) (even k) := odd k ;
parity (S ?(S (mult 2 k))) (odd k) := cast (even (S k)) _ }.
(** We can halve a natural looking at its parity and using the lower truncation. *)
Equations half (n : nat) : nat :=
half n with parity n => {
half ?(S (mult 2 k)) (odd k) := k ;
half ?(mult 2 k) (even k) := k }.
Equations vtail {A n} (v : vector A (S n)) : vector A n :=
vtail (cons a v') := v'.
Equations diag {A n} (v : vector (vector A n) n) : vector A n :=
diag (n:=O) nil := nil ;
diag (n:=S ?(n)) (cons (@cons a n v) v') := cons a (diag (vmap vtail v')).
Transparent diag.
Definition mat A n m := vector (vector A m) n.
Equations vmake {A} (n : nat) (a : A) : vector A n :=
vmake O a := nil ;
vmake (S n) a := cons a (vmake n a).
Equations vfold_right {A : nat -> Type} {B} (f : ∀ n, B -> A n -> A (S n)) (e : A 0) {n} (v : vector B n) : A n :=
vfold_right f e nil := e ;
vfold_right f e (@cons a n v) := f n a (vfold_right f e v).
Equations vzip {A B C n} (f : A -> B -> C) (v : vector A n) (w : vector B n) : vector C n :=
vzip f nil _ := nil ;
vzip f (cons a v) (cons a' v') := cons (f a a') (vzip f v v').
Definition transpose {A m n} : mat A m n -> mat A n m :=
vfold_right (A:=λ m, mat A n m)
(λ m', vzip (λ a, cons a))
(vmake n nil).
Require Import Examples.Fin.
Generalizable All Variables.
Opaque vmap. Opaque vtail. Opaque nth.
Lemma nth_vmap `(v : vector A n) `(fn : A -> B) (f : fin n) : nth (vmap fn v) f = fn (nth v f).
Proof. revert B fn. funelim (nth v f); intros; now simp nth vmap. Qed.
Lemma nth_vtail `(v : vector A (S n)) (f : fin n) : nth (vtail v) f = nth v (fs f).
Proof. funelim (vtail v); intros; now simp nth. Qed.
#[local] Hint Rewrite @nth_vmap @nth_vtail : nth.
Lemma diag_nth `(v : vector (vector A n) n) (f : fin n) : nth (diag v) f = nth (nth v f) f.
Proof. revert f. funelim (diag v); intros f.
depelim f.
depelim f; simp nth; trivial.
rewrite H. now simp nth.
Qed.
Equations assoc (x y z : nat) : x + y + z = x + (y + z) :=
assoc 0 y z := eq_refl;
assoc (S x) y z with assoc x y z, x + (y + z) => {
assoc (S x) y z eq_refl _ := eq_refl }.
Section well_founded_recursion_and_auxiliary_function.
(** When recursive calls are made on results pattern-matching
the output of auxiliary functions, you need enough information
to prove that the argument of recursive calls are smaller.
This is usually granted by the specification of the auxiliary
function (see function pivot in the quicksort example).
When the type of the recursive function is not informative
enough, we can use an inspect pattern as illustrated
in the following example. *)
Context {A : Type} (f : A -> option A) {lt : A -> A -> Prop}
`{WellFounded A lt}.
Hypothesis decr_f : forall n p, f n = Some p -> lt p n.
(** The [inspect] definition is used to pack a value with a proof
of an equality to itself. When pattern matching on the first component in
this existential type, we keep information about the origin of the pattern
available in the second component, the equality. *)
Definition inspect {A} (a : A) : {b | a = b} :=
exist _ a eq_refl.
Notation "x 'eqn:' p" := (exist _ x p) (only parsing, at level 20).
(** If one uses [f n] instead of [inspect (f n)] in the following definition,
patterns should be patterns for the option type, but then there
is an unprovable obligation that is generated as we don't keep information
about the call to [f n] being equal to [Some p] to justify the recursive
call to [f_sequence]. *)
Equations f_sequence (n : A) : list A by wf n lt :=
f_sequence n with inspect (f n) := {
| Some p eqn: eq1 => p :: f_sequence p;
| None eqn:_ => List.nil
}.
(** The following is an illustration of a theorem on f_sequence. *)
Lemma in_seq_image (n p : A) : List.In p (f_sequence n) ->
exists k, f k = Some p.
Proof.
funelim (f_sequence n);[ | now intros abs; elim abs].
now simpl; intros [p_is_a | p_in_seq];[rewrite <- p_is_a; exists n | auto].
Qed.
End well_founded_recursion_and_auxiliary_function.
Module IdElim.
Import Sigma_Notations.
Set Equations Transparent.
Equations transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
transport P eq_refl u := u.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing).
Equations path_sigma {A : Type} {P : A -> Type} (u v : sigma P)
(p : u.1 = v.1) (q : p # u.2 = v.2) : u = v :=
path_sigma (_ , _) (_ , _) eq_refl eq_refl := eq_refl.
Example foo := path_sigma_elim.
End IdElim.