forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlib.rs
2334 lines (2127 loc) · 94.3 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![feature(associated_type_defaults)]
#![feature(rustc_private)]
#![feature(try_blocks)]
#![feature(let_chains)]
#![recursion_limit = "256"]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#[macro_use]
extern crate tracing;
mod errors;
use rustc_ast::MacroDef;
use rustc_attr as attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_data_structures::intern::Interned;
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
use rustc_fluent_macro::fluent_messages;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, CRATE_DEF_ID};
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{AssocItemKind, ForeignItemKind, HirIdSet, ItemId, Node, PatKind};
use rustc_middle::bug;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::privacy::{EffectiveVisibilities, EffectiveVisibility, Level};
use rustc_middle::query::Providers;
use rustc_middle::span_bug;
use rustc_middle::ty::subst::InternalSubsts;
use rustc_middle::ty::{self, Const, GenericParamDefKind};
use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor};
use rustc_session::lint;
use rustc_span::hygiene::Transparency;
use rustc_span::symbol::{kw, sym, Ident};
use rustc_span::Span;
use std::marker::PhantomData;
use std::ops::ControlFlow;
use std::{fmt, mem};
use errors::{
FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface,
InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, PrivateInterfacesOrBoundsLint,
ReportEffectiveVisibility, UnnameableTypesLint, UnnamedItemIsPrivate,
};
fluent_messages! { "../messages.ftl" }
////////////////////////////////////////////////////////////////////////////////
/// Generic infrastructure used to implement specific visitors below.
////////////////////////////////////////////////////////////////////////////////
struct LazyDefPathStr<'tcx> {
def_id: DefId,
tcx: TyCtxt<'tcx>,
}
impl<'tcx> fmt::Display for LazyDefPathStr<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.tcx.def_path_str(self.def_id))
}
}
/// Implemented to visit all `DefId`s in a type.
/// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them.
/// The idea is to visit "all components of a type", as documented in
/// <https://github.com/rust-lang/rfcs/blob/master/text/2145-type-privacy.md#how-to-determine-visibility-of-a-type>.
/// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings.
/// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s
/// manually. Second, it doesn't visit some type components like signatures of fn types, or traits
/// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`.
trait DefIdVisitor<'tcx> {
type BreakTy = ();
const SHALLOW: bool = false;
const SKIP_ASSOC_TYS: bool = false;
fn tcx(&self) -> TyCtxt<'tcx>;
fn visit_def_id(
&mut self,
def_id: DefId,
kind: &str,
descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy>;
/// Not overridden, but used to actually visit types and traits.
fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> {
DefIdVisitorSkeleton {
def_id_visitor: self,
visited_opaque_tys: Default::default(),
dummy: Default::default(),
}
}
fn visit(
&mut self,
ty_fragment: impl TypeVisitable<TyCtxt<'tcx>>,
) -> ControlFlow<Self::BreakTy> {
ty_fragment.visit_with(&mut self.skeleton())
}
fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_trait(trait_ref)
}
fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_projection_ty(projection)
}
fn visit_predicates(
&mut self,
predicates: ty::GenericPredicates<'tcx>,
) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_clauses(predicates.predicates)
}
fn visit_clauses(
&mut self,
clauses: &[(ty::Clause<'tcx>, Span)],
) -> ControlFlow<Self::BreakTy> {
self.skeleton().visit_clauses(clauses)
}
}
struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> {
def_id_visitor: &'v mut V,
visited_opaque_tys: FxHashSet<DefId>,
dummy: PhantomData<TyCtxt<'tcx>>,
}
impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V>
where
V: DefIdVisitor<'tcx> + ?Sized,
{
fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow<V::BreakTy> {
let TraitRef { def_id, substs, .. } = trait_ref;
self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?;
if V::SHALLOW { ControlFlow::Continue(()) } else { substs.visit_with(self) }
}
fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow<V::BreakTy> {
let tcx = self.def_id_visitor.tcx();
let (trait_ref, assoc_substs) = if tcx.def_kind(projection.def_id)
!= DefKind::ImplTraitPlaceholder
{
projection.trait_ref_and_own_substs(tcx)
} else {
// HACK(RPITIT): Remove this when RPITITs are lowered to regular assoc tys
let def_id = tcx.impl_trait_in_trait_parent_fn(projection.def_id);
let trait_generics = tcx.generics_of(def_id);
(
ty::TraitRef::new(tcx, def_id, projection.substs.truncate_to(tcx, trait_generics)),
&projection.substs[trait_generics.count()..],
)
};
self.visit_trait(trait_ref)?;
if V::SHALLOW {
ControlFlow::Continue(())
} else {
assoc_substs.iter().try_for_each(|subst| subst.visit_with(self))
}
}
fn visit_clause(&mut self, clause: ty::Clause<'tcx>) -> ControlFlow<V::BreakTy> {
match clause.kind().skip_binder() {
ty::ClauseKind::Trait(ty::TraitPredicate { trait_ref, constness: _, polarity: _ }) => {
self.visit_trait(trait_ref)
}
ty::ClauseKind::Projection(ty::ProjectionPredicate { projection_ty, term }) => {
term.visit_with(self)?;
self.visit_projection_ty(projection_ty)
}
ty::ClauseKind::TypeOutlives(ty::OutlivesPredicate(ty, _region)) => ty.visit_with(self),
ty::ClauseKind::RegionOutlives(..) => ControlFlow::Continue(()),
ty::ClauseKind::ConstArgHasType(ct, ty) => {
ct.visit_with(self)?;
ty.visit_with(self)
}
ty::ClauseKind::ConstEvaluatable(ct) => ct.visit_with(self),
ty::ClauseKind::WellFormed(arg) => arg.visit_with(self),
ty::ClauseKind::TypeWellFormedFromEnv(_) => bug!("unexpected clause: {clause}"),
}
}
fn visit_clauses(&mut self, clauses: &[(ty::Clause<'tcx>, Span)]) -> ControlFlow<V::BreakTy> {
clauses.into_iter().try_for_each(|&(clause, _span)| self.visit_clause(clause))
}
}
impl<'tcx, V> TypeVisitor<TyCtxt<'tcx>> for DefIdVisitorSkeleton<'_, 'tcx, V>
where
V: DefIdVisitor<'tcx> + ?Sized,
{
type BreakTy = V::BreakTy;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow<V::BreakTy> {
let tcx = self.def_id_visitor.tcx();
// InternalSubsts are not visited here because they are visited below
// in `super_visit_with`.
match *ty.kind() {
ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..)
| ty::Foreign(def_id)
| ty::FnDef(def_id, ..)
| ty::Closure(def_id, ..)
| ty::Generator(def_id, ..) => {
self.def_id_visitor.visit_def_id(def_id, "type", &ty)?;
if V::SHALLOW {
return ControlFlow::Continue(());
}
// Default type visitor doesn't visit signatures of fn types.
// Something like `fn() -> Priv {my_func}` is considered a private type even if
// `my_func` is public, so we need to visit signatures.
if let ty::FnDef(..) = ty.kind() {
// FIXME: this should probably use `substs` from `FnDef`
tcx.fn_sig(def_id).subst_identity().visit_with(self)?;
}
// Inherent static methods don't have self type in substs.
// Something like `fn() {my_method}` type of the method
// `impl Pub<Priv> { pub fn my_method() {} }` is considered a private type,
// so we need to visit the self type additionally.
if let Some(assoc_item) = tcx.opt_associated_item(def_id) {
if let Some(impl_def_id) = assoc_item.impl_container(tcx) {
tcx.type_of(impl_def_id).subst_identity().visit_with(self)?;
}
}
}
ty::Alias(ty::Weak, alias) => {
self.def_id_visitor.visit_def_id(alias.def_id, "type alias", &ty);
}
ty::Alias(ty::Projection, proj) => {
if V::SKIP_ASSOC_TYS {
// Visitors searching for minimal visibility/reachability want to
// conservatively approximate associated types like `<Type as Trait>::Alias`
// as visible/reachable even if both `Type` and `Trait` are private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return ControlFlow::Continue(());
}
// This will also visit substs if necessary, so we don't need to recurse.
return self.visit_projection_ty(proj);
}
ty::Alias(ty::Inherent, data) => {
if V::SKIP_ASSOC_TYS {
// Visitors searching for minimal visibility/reachability want to
// conservatively approximate associated types like `Type::Alias`
// as visible/reachable even if `Type` is private.
// Ideally, associated types should be substituted in the same way as
// free type aliases, but this isn't done yet.
return ControlFlow::Continue(());
}
self.def_id_visitor.visit_def_id(
data.def_id,
"associated type",
&LazyDefPathStr { def_id: data.def_id, tcx },
)?;
// This will also visit substs if necessary, so we don't need to recurse.
return if V::SHALLOW {
ControlFlow::Continue(())
} else {
data.substs.iter().try_for_each(|subst| subst.visit_with(self))
};
}
ty::Dynamic(predicates, ..) => {
// All traits in the list are considered the "primary" part of the type
// and are visited by shallow visitors.
for predicate in predicates {
let trait_ref = match predicate.skip_binder() {
ty::ExistentialPredicate::Trait(trait_ref) => trait_ref,
ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx),
ty::ExistentialPredicate::AutoTrait(def_id) => {
ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() }
}
};
let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref;
self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?;
}
}
ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => {
// Skip repeated `Opaque`s to avoid infinite recursion.
if self.visited_opaque_tys.insert(def_id) {
// The intent is to treat `impl Trait1 + Trait2` identically to
// `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself
// (it either has no visibility, or its visibility is insignificant, like
// visibilities of type aliases) and recurse into bounds instead to go
// through the trait list (default type visitor doesn't visit those traits).
// All traits in the list are considered the "primary" part of the type
// and are visited by shallow visitors.
self.visit_clauses(tcx.explicit_item_bounds(def_id).skip_binder())?;
}
}
// These types don't have their own def-ids (but may have subcomponents
// with def-ids that should be visited recursively).
ty::Bool
| ty::Char
| ty::Int(..)
| ty::Uint(..)
| ty::Float(..)
| ty::Str
| ty::Never
| ty::Array(..)
| ty::Slice(..)
| ty::Tuple(..)
| ty::RawPtr(..)
| ty::Ref(..)
| ty::FnPtr(..)
| ty::Param(..)
| ty::Bound(..)
| ty::Error(_)
| ty::GeneratorWitness(..)
| ty::GeneratorWitnessMIR(..) => {}
ty::Placeholder(..) | ty::Infer(..) => {
bug!("unexpected type: {:?}", ty)
}
}
if V::SHALLOW { ControlFlow::Continue(()) } else { ty.super_visit_with(self) }
}
fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow<Self::BreakTy> {
let tcx = self.def_id_visitor.tcx();
tcx.expand_abstract_consts(c).super_visit_with(self)
}
}
fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility {
if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 }
}
////////////////////////////////////////////////////////////////////////////////
/// Visitor used to determine impl visibility and reachability.
////////////////////////////////////////////////////////////////////////////////
struct FindMin<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> {
tcx: TyCtxt<'tcx>,
effective_visibilities: &'a EffectiveVisibilities,
min: VL,
}
impl<'a, 'tcx, VL: VisibilityLike, const SHALLOW: bool> DefIdVisitor<'tcx>
for FindMin<'a, 'tcx, VL, SHALLOW>
{
const SHALLOW: bool = SHALLOW;
const SKIP_ASSOC_TYS: bool = true;
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
_kind: &str,
_descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if let Some(def_id) = def_id.as_local() {
self.min = VL::new_min(self, def_id);
}
ControlFlow::Continue(())
}
}
trait VisibilityLike: Sized {
const MAX: Self;
fn new_min<const SHALLOW: bool>(
find: &FindMin<'_, '_, Self, SHALLOW>,
def_id: LocalDefId,
) -> Self;
// Returns an over-approximation (`SKIP_ASSOC_TYS` = true) of visibility due to
// associated types for which we can't determine visibility precisely.
fn of_impl<const SHALLOW: bool>(
def_id: LocalDefId,
tcx: TyCtxt<'_>,
effective_visibilities: &EffectiveVisibilities,
) -> Self {
let mut find = FindMin::<_, SHALLOW> { tcx, effective_visibilities, min: Self::MAX };
find.visit(tcx.type_of(def_id).subst_identity());
if let Some(trait_ref) = tcx.impl_trait_ref(def_id) {
find.visit_trait(trait_ref.subst_identity());
}
find.min
}
}
impl VisibilityLike for ty::Visibility {
const MAX: Self = ty::Visibility::Public;
fn new_min<const SHALLOW: bool>(
find: &FindMin<'_, '_, Self, SHALLOW>,
def_id: LocalDefId,
) -> Self {
min(find.tcx.local_visibility(def_id), find.min, find.tcx)
}
}
impl VisibilityLike for EffectiveVisibility {
const MAX: Self = EffectiveVisibility::from_vis(ty::Visibility::Public);
fn new_min<const SHALLOW: bool>(
find: &FindMin<'_, '_, Self, SHALLOW>,
def_id: LocalDefId,
) -> Self {
let effective_vis =
find.effective_visibilities.effective_vis(def_id).copied().unwrap_or_else(|| {
let private_vis =
ty::Visibility::Restricted(find.tcx.parent_module_from_def_id(def_id));
EffectiveVisibility::from_vis(private_vis)
});
effective_vis.min(find.min, find.tcx)
}
}
////////////////////////////////////////////////////////////////////////////////
/// The embargo visitor, used to determine the exports of the AST.
////////////////////////////////////////////////////////////////////////////////
struct EmbargoVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
/// Effective visibilities for reachable nodes.
effective_visibilities: EffectiveVisibilities,
/// A set of pairs corresponding to modules, where the first module is
/// reachable via a macro that's defined in the second module. This cannot
/// be represented as reachable because it can't handle the following case:
///
/// pub mod n { // Should be `Public`
/// pub(crate) mod p { // Should *not* be accessible
/// pub fn f() -> i32 { 12 } // Must be `Reachable`
/// }
/// }
/// pub macro m() {
/// n::p::f()
/// }
macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>,
/// Preliminary pass for marking all underlying types of `impl Trait`s as reachable.
impl_trait_pass: bool,
/// Has something changed in the level map?
changed: bool,
}
struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> {
effective_vis: EffectiveVisibility,
item_def_id: LocalDefId,
ev: &'a mut EmbargoVisitor<'tcx>,
level: Level,
}
impl<'tcx> EmbargoVisitor<'tcx> {
fn get(&self, def_id: LocalDefId) -> Option<EffectiveVisibility> {
self.effective_visibilities.effective_vis(def_id).copied()
}
// Updates node effective visibility.
fn update(
&mut self,
def_id: LocalDefId,
inherited_effective_vis: EffectiveVisibility,
level: Level,
) {
let nominal_vis = self.tcx.local_visibility(def_id);
self.update_eff_vis(def_id, inherited_effective_vis, Some(nominal_vis), level);
}
fn update_eff_vis(
&mut self,
def_id: LocalDefId,
inherited_effective_vis: EffectiveVisibility,
max_vis: Option<ty::Visibility>,
level: Level,
) {
let private_vis = ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id));
if max_vis != Some(private_vis) {
self.changed |= self.effective_visibilities.update(
def_id,
max_vis,
|| private_vis,
inherited_effective_vis,
level,
self.tcx,
);
}
}
fn reach(
&mut self,
def_id: LocalDefId,
effective_vis: EffectiveVisibility,
) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
ReachEverythingInTheInterfaceVisitor {
effective_vis,
item_def_id: def_id,
ev: self,
level: Level::Reachable,
}
}
fn reach_through_impl_trait(
&mut self,
def_id: LocalDefId,
effective_vis: EffectiveVisibility,
) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
ReachEverythingInTheInterfaceVisitor {
effective_vis,
item_def_id: def_id,
ev: self,
level: Level::ReachableThroughImplTrait,
}
}
// We have to make sure that the items that macros might reference
// are reachable, since they might be exported transitively.
fn update_reachability_from_macro(
&mut self,
local_def_id: LocalDefId,
md: &MacroDef,
macro_ev: EffectiveVisibility,
) {
// Non-opaque macros cannot make other items more accessible than they already are.
let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id);
let attrs = self.tcx.hir().attrs(hir_id);
if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque {
return;
}
let macro_module_def_id = self.tcx.local_parent(local_def_id);
if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) {
// The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252).
return;
}
if self.effective_visibilities.public_at_level(local_def_id).is_none() {
return;
}
// Since we are starting from an externally visible module,
// all the parents in the loop below are also guaranteed to be modules.
let mut module_def_id = macro_module_def_id;
loop {
let changed_reachability =
self.update_macro_reachable(module_def_id, macro_module_def_id, macro_ev);
if changed_reachability || module_def_id == CRATE_DEF_ID {
break;
}
module_def_id = self.tcx.local_parent(module_def_id);
}
}
/// Updates the item as being reachable through a macro defined in the given
/// module. Returns `true` if the level has changed.
fn update_macro_reachable(
&mut self,
module_def_id: LocalDefId,
defining_mod: LocalDefId,
macro_ev: EffectiveVisibility,
) -> bool {
if self.macro_reachable.insert((module_def_id, defining_mod)) {
self.update_macro_reachable_mod(module_def_id, defining_mod, macro_ev);
true
} else {
false
}
}
fn update_macro_reachable_mod(
&mut self,
module_def_id: LocalDefId,
defining_mod: LocalDefId,
macro_ev: EffectiveVisibility,
) {
let module = self.tcx.hir().get_module(module_def_id).0;
for item_id in module.item_ids {
let def_kind = self.tcx.def_kind(item_id.owner_id);
let vis = self.tcx.local_visibility(item_id.owner_id.def_id);
self.update_macro_reachable_def(
item_id.owner_id.def_id,
def_kind,
vis,
defining_mod,
macro_ev,
);
}
for child in self.tcx.module_children_local(module_def_id) {
// FIXME: Use module children for the logic above too.
if !child.reexport_chain.is_empty()
&& child.vis.is_accessible_from(defining_mod, self.tcx)
&& let Res::Def(def_kind, def_id) = child.res
&& let Some(def_id) = def_id.as_local() {
let vis = self.tcx.local_visibility(def_id);
self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod, macro_ev);
}
}
}
fn update_macro_reachable_def(
&mut self,
def_id: LocalDefId,
def_kind: DefKind,
vis: ty::Visibility,
module: LocalDefId,
macro_ev: EffectiveVisibility,
) {
self.update(def_id, macro_ev, Level::Reachable);
match def_kind {
// No type privacy, so can be directly marked as reachable.
DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => {
if vis.is_accessible_from(module, self.tcx) {
self.update(def_id, macro_ev, Level::Reachable);
}
}
// Hygiene isn't really implemented for `macro_rules!` macros at the
// moment. Accordingly, marking them as reachable is unwise. `macro` macros
// have normal hygiene, so we can treat them like other items without type
// privacy and mark them reachable.
DefKind::Macro(_) => {
let item = self.tcx.hir().expect_item(def_id);
if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind {
if vis.is_accessible_from(module, self.tcx) {
self.update(def_id, macro_ev, Level::Reachable);
}
}
}
// We can't use a module name as the final segment of a path, except
// in use statements. Since re-export checking doesn't consider
// hygiene these don't need to be marked reachable. The contents of
// the module, however may be reachable.
DefKind::Mod => {
if vis.is_accessible_from(module, self.tcx) {
self.update_macro_reachable(def_id, module, macro_ev);
}
}
DefKind::Struct | DefKind::Union => {
// While structs and unions have type privacy, their fields do not.
let item = self.tcx.hir().expect_item(def_id);
if let hir::ItemKind::Struct(ref struct_def, _)
| hir::ItemKind::Union(ref struct_def, _) = item.kind
{
for field in struct_def.fields() {
let field_vis = self.tcx.local_visibility(field.def_id);
if field_vis.is_accessible_from(module, self.tcx) {
self.reach(field.def_id, macro_ev).ty();
}
}
} else {
bug!("item {:?} with DefKind {:?}", item, def_kind);
}
}
// These have type privacy, so are not reachable unless they're
// public, or are not namespaced at all.
DefKind::AssocConst
| DefKind::AssocTy
| DefKind::ConstParam
| DefKind::Ctor(_, _)
| DefKind::Enum
| DefKind::ForeignTy
| DefKind::Fn
| DefKind::OpaqueTy
| DefKind::ImplTraitPlaceholder
| DefKind::AssocFn
| DefKind::Trait
| DefKind::TyParam
| DefKind::Variant
| DefKind::LifetimeParam
| DefKind::ExternCrate
| DefKind::Use
| DefKind::ForeignMod
| DefKind::AnonConst
| DefKind::InlineConst
| DefKind::Field
| DefKind::GlobalAsm
| DefKind::Impl { .. }
| DefKind::Closure
| DefKind::Generator => (),
}
}
}
impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> {
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
if self.impl_trait_pass
&& let hir::ItemKind::OpaqueTy(ref opaque) = item.kind
&& !opaque.in_trait {
// FIXME: This is some serious pessimization intended to workaround deficiencies
// in the reachability pass (`middle/reachable.rs`). Types are marked as link-time
// reachable if they are returned via `impl Trait`, even from private functions.
let pub_ev = EffectiveVisibility::from_vis(ty::Visibility::Public);
self.reach_through_impl_trait(item.owner_id.def_id, pub_ev)
.generics()
.predicates()
.ty();
return;
}
// Update levels of nested things and mark all items
// in interfaces of reachable items as reachable.
let item_ev = self.get(item.owner_id.def_id);
match item.kind {
// The interface is empty, and no nested items.
hir::ItemKind::Use(..)
| hir::ItemKind::ExternCrate(..)
| hir::ItemKind::GlobalAsm(..) => {}
// The interface is empty, and all nested items are processed by `visit_item`.
hir::ItemKind::Mod(..) | hir::ItemKind::OpaqueTy(..) => {}
hir::ItemKind::Macro(ref macro_def, _) => {
if let Some(item_ev) = item_ev {
self.update_reachability_from_macro(item.owner_id.def_id, macro_def, item_ev);
}
}
hir::ItemKind::Const(..)
| hir::ItemKind::Static(..)
| hir::ItemKind::Fn(..)
| hir::ItemKind::TyAlias(..) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates().ty();
}
}
hir::ItemKind::Trait(.., trait_item_refs) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
for trait_item_ref in trait_item_refs {
self.update(trait_item_ref.id.owner_id.def_id, item_ev, Level::Reachable);
let tcx = self.tcx;
let mut reach = self.reach(trait_item_ref.id.owner_id.def_id, item_ev);
reach.generics().predicates();
if trait_item_ref.kind == AssocItemKind::Type
&& !tcx.defaultness(trait_item_ref.id.owner_id).has_value()
{
// No type to visit.
} else {
reach.ty();
}
}
}
}
hir::ItemKind::TraitAlias(..) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
}
}
hir::ItemKind::Impl(ref impl_) => {
// Type inference is very smart sometimes. It can make an impl reachable even some
// components of its type or trait are unreachable. E.g. methods of
// `impl ReachableTrait<UnreachableTy> for ReachableTy<UnreachableTy> { ... }`
// can be usable from other crates (#57264). So we skip substs when calculating
// reachability and consider an impl reachable if its "shallow" type and trait are
// reachable.
//
// The assumption we make here is that type-inference won't let you use an impl
// without knowing both "shallow" version of its self type and "shallow" version of
// its trait if it exists (which require reaching the `DefId`s in them).
let item_ev = EffectiveVisibility::of_impl::<true>(
item.owner_id.def_id,
self.tcx,
&self.effective_visibilities,
);
self.update_eff_vis(item.owner_id.def_id, item_ev, None, Level::Direct);
self.reach(item.owner_id.def_id, item_ev).generics().predicates().ty().trait_ref();
for impl_item_ref in impl_.items {
let def_id = impl_item_ref.id.owner_id.def_id;
let max_vis =
impl_.of_trait.is_none().then(|| self.tcx.local_visibility(def_id));
self.update_eff_vis(def_id, item_ev, max_vis, Level::Direct);
if let Some(impl_item_ev) = self.get(def_id) {
self.reach(def_id, impl_item_ev).generics().predicates().ty();
}
}
}
hir::ItemKind::Enum(ref def, _) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
}
for variant in def.variants {
if let Some(item_ev) = item_ev {
self.update(variant.def_id, item_ev, Level::Reachable);
}
if let Some(variant_ev) = self.get(variant.def_id) {
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
self.update(ctor_def_id, variant_ev, Level::Reachable);
}
for field in variant.data.fields() {
self.update(field.def_id, variant_ev, Level::Reachable);
self.reach(field.def_id, variant_ev).ty();
}
// Corner case: if the variant is reachable, but its
// enum is not, make the enum reachable as well.
self.reach(item.owner_id.def_id, variant_ev).ty();
}
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
if let Some(ctor_ev) = self.get(ctor_def_id) {
self.reach(item.owner_id.def_id, ctor_ev).ty();
}
}
}
}
hir::ItemKind::ForeignMod { items, .. } => {
for foreign_item in items {
if let Some(foreign_item_ev) = self.get(foreign_item.id.owner_id.def_id) {
self.reach(foreign_item.id.owner_id.def_id, foreign_item_ev)
.generics()
.predicates()
.ty();
}
}
}
hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
if let Some(item_ev) = item_ev {
self.reach(item.owner_id.def_id, item_ev).generics().predicates();
for field in struct_def.fields() {
self.update(field.def_id, item_ev, Level::Reachable);
if let Some(field_ev) = self.get(field.def_id) {
self.reach(field.def_id, field_ev).ty();
}
}
}
if let Some(ctor_def_id) = struct_def.ctor_def_id() {
if let Some(item_ev) = item_ev {
self.update(ctor_def_id, item_ev, Level::Reachable);
}
if let Some(ctor_ev) = self.get(ctor_def_id) {
self.reach(item.owner_id.def_id, ctor_ev).ty();
}
}
}
}
}
}
impl ReachEverythingInTheInterfaceVisitor<'_, '_> {
fn generics(&mut self) -> &mut Self {
for param in &self.ev.tcx.generics_of(self.item_def_id).params {
match param.kind {
GenericParamDefKind::Lifetime => {}
GenericParamDefKind::Type { has_default, .. } => {
if has_default {
self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
}
}
GenericParamDefKind::Const { has_default } => {
self.visit(self.ev.tcx.type_of(param.def_id).subst_identity());
if has_default {
self.visit(self.ev.tcx.const_param_default(param.def_id).subst_identity());
}
}
}
}
self
}
fn predicates(&mut self) -> &mut Self {
self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id));
self
}
fn ty(&mut self) -> &mut Self {
self.visit(self.ev.tcx.type_of(self.item_def_id).subst_identity());
self
}
fn trait_ref(&mut self) -> &mut Self {
if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) {
self.visit_trait(trait_ref.subst_identity());
}
self
}
}
impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> {
fn tcx(&self) -> TyCtxt<'tcx> {
self.ev.tcx
}
fn visit_def_id(
&mut self,
def_id: DefId,
_kind: &str,
_descr: &dyn fmt::Display,
) -> ControlFlow<Self::BreakTy> {
if let Some(def_id) = def_id.as_local() {
// All effective visibilities except `reachable_through_impl_trait` are limited to
// nominal visibility. If any type or trait is leaked farther than that, it will
// produce type privacy errors on any use, so we don't consider it leaked.
let max_vis = (self.level != Level::ReachableThroughImplTrait)
.then(|| self.ev.tcx.local_visibility(def_id));
self.ev.update_eff_vis(def_id, self.effective_vis, max_vis, self.level);
}
ControlFlow::Continue(())
}
}
////////////////////////////////////////////////////////////////////////////////
/// Visitor, used for EffectiveVisibilities table checking
////////////////////////////////////////////////////////////////////////////////
pub struct TestReachabilityVisitor<'tcx, 'a> {
tcx: TyCtxt<'tcx>,
effective_visibilities: &'a EffectiveVisibilities,
}
fn vis_to_string<'tcx>(def_id: LocalDefId, vis: ty::Visibility, tcx: TyCtxt<'tcx>) -> String {
match vis {
ty::Visibility::Restricted(restricted_id) => {
if restricted_id.is_top_level_module() {
"pub(crate)".to_string()
} else if restricted_id == tcx.parent_module_from_def_id(def_id) {
"pub(self)".to_string()
} else {
format!("pub({})", tcx.item_name(restricted_id.to_def_id()))
}
}
ty::Visibility::Public => "pub".to_string(),
}
}
impl<'tcx, 'a> TestReachabilityVisitor<'tcx, 'a> {
fn effective_visibility_diagnostic(&mut self, def_id: LocalDefId) {
if self.tcx.has_attr(def_id, sym::rustc_effective_visibility) {
let mut error_msg = String::new();
let span = self.tcx.def_span(def_id.to_def_id());
if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) {
for level in Level::all_levels() {
let vis_str = vis_to_string(def_id, *effective_vis.at_level(level), self.tcx);
if level != Level::Direct {
error_msg.push_str(", ");
}
error_msg.push_str(&format!("{level:?}: {vis_str}"));
}
} else {
error_msg.push_str("not in the table");
}
self.tcx.sess.emit_err(ReportEffectiveVisibility { span, descr: error_msg });
}
}
}
impl<'tcx, 'a> Visitor<'tcx> for TestReachabilityVisitor<'tcx, 'a> {
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
match item.kind {
hir::ItemKind::Enum(ref def, _) => {
for variant in def.variants.iter() {
self.effective_visibility_diagnostic(variant.def_id);
if let Some(ctor_def_id) = variant.data.ctor_def_id() {
self.effective_visibility_diagnostic(ctor_def_id);
}
for field in variant.data.fields() {
self.effective_visibility_diagnostic(field.def_id);
}
}
}
hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => {
if let Some(ctor_def_id) = def.ctor_def_id() {
self.effective_visibility_diagnostic(ctor_def_id);
}
for field in def.fields() {
self.effective_visibility_diagnostic(field.def_id);
}
}
_ => {}
}
}
fn visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
fn visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
self.effective_visibility_diagnostic(item.owner_id.def_id);
}
}
//////////////////////////////////////////////////////////////////////////////////////
/// Name privacy visitor, checks privacy and reports violations.
/// Most of name privacy checks are performed during the main resolution phase,
/// or later in type checking when field accesses and associated items are resolved.
/// This pass performs remaining checks for fields in struct expressions and patterns.
//////////////////////////////////////////////////////////////////////////////////////
struct NamePrivacyVisitor<'tcx> {
tcx: TyCtxt<'tcx>,
maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>,
current_item: LocalDefId,
}
impl<'tcx> NamePrivacyVisitor<'tcx> {
/// Gets the type-checking results for the current body.
/// As this will ICE if called outside bodies, only call when working with
/// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies).
#[track_caller]
fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> {
self.maybe_typeck_results
.expect("`NamePrivacyVisitor::typeck_results` called outside of body")
}
// Checks that a field in a struct constructor (expression or pattern) is accessible.