forked from krrish94/nerf-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_geo_nerf_perf.py
165 lines (142 loc) · 6.09 KB
/
eval_geo_nerf_perf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import argparse
import glob
import os
import time
import pickle
import random
import matplotlib.pyplot as plt
import numpy as np
import torch
import torchvision
import yaml
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
from nerf import (CfgNode, get_embedding_function, get_ray_bundle, img2mse,
load_blender_data, load_llff_data, meshgrid_xy, models,
mse2psnr, run_one_iter_of_nerf, sample_geodesics)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="Path to (.yml) config file."
)
parser.add_argument(
"--load-checkpoint",
type=str,
default="",
help="Path to load saved checkpoint from.",
)
configargs = parser.parse_args()
# Read config file.
cfg = None
with open(configargs.config, "r") as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
# # (Optional:) enable this to track autograd issues when debugging
# torch.autograd.set_detect_anomaly(True)
# Seed experiment for repeatability
seed = cfg.experiment.randomseed
np.random.seed(seed)
torch.manual_seed(seed)
# Device on which to run.
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
encode_position_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
include_input=cfg.models.coarse.include_input_xyz,
log_sampling=cfg.models.coarse.log_sampling_xyz,
)
encode_direction_fn = None
assert(cfg.models.coarse.use_viewdirs == False)
if cfg.models.coarse.use_viewdirs:
encode_direction_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
include_input=cfg.models.coarse.include_input_dir,
log_sampling=cfg.models.coarse.log_sampling_dir,
)
# Initialize a coarse-resolution model.
model_coarse = getattr(models, cfg.models.coarse.type)(
num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
include_input_xyz=cfg.models.coarse.include_input_xyz,
include_input_dir=cfg.models.coarse.include_input_dir,
use_viewdirs=cfg.models.coarse.use_viewdirs,
)
# If a fine-resolution model is specified, initialize it.
model_coarse.to(device)
model_fine = None
if hasattr(cfg.models, "fine"):
model_fine = getattr(models, cfg.models.fine.type)(
num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
include_input_xyz=cfg.models.fine.include_input_xyz,
include_input_dir=cfg.models.fine.include_input_dir,
use_viewdirs=cfg.models.fine.use_viewdirs,
)
model_fine.to(device)
# Setup logging.
logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(logdir)
# Write out config parameters.
with open(os.path.join(logdir, "config.yml"), "w") as f:
f.write(cfg.dump()) # cfg, f, default_flow_style=False)
# Load an existing checkpoint, if a path is specified.
if os.path.exists(configargs.load_checkpoint):
checkpoint = torch.load(configargs.load_checkpoint, map_location=device)
model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
if checkpoint["model_fine_state_dict"]:
model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
# optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
geo_nerf_model = models.GeoNeRF(128)
geo_nerf_model.set_nerf(model_coarse)
geo_nerf_model.to(device)
state = torch.load(cfg.geonerf.out_model, map_location=device)
geo_nerf_model.load_state_dict(state)
geo_nerf_model.eval()
geodesics = pickle.load(open(cfg.geonerf.cache_filename, 'rb'))
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
print(f'Number of parameters: {count_parameters(geo_nerf_model)}')
# Initialize optimizer.
N = geodesics['V'].shape[0]
print(f"Perf evaluation on: {device}")
X1 = geodesics['V'].copy().astype(np.float32)
X1 = torch.from_numpy(X1).to(device)
X1 = encode_position_fn(X1)
n_trials = 100
with torch.no_grad():
start_time = 0.0
for i in range(n_trials + 1):
if i == 1:
start_time = time.time() # first inference is always very slow, messes up bench
x0 = geodesics['V'][random.randrange(0,50)].reshape((1, 3)).astype(np.float32)
X0 = np.repeat(x0, N, axis=0)
X0 = torch.from_numpy(X0).to(device)
X0 = encode_position_fn(X0)
pred = geo_nerf_model(X0, X1).cpu().numpy().reshape((-1,))
end_time = time.time()
avg_time = (end_time - start_time) / n_trials
print(f'Average time for geodesics from a given source: {avg_time}')
with torch.no_grad():
start_time = time.time()
for i in range(n_trials):
x0 = geodesics['V'][random.randrange(0,N)].reshape((1, 3)).astype(np.float32)
x1 = geodesics['V'][random.randrange(0,N)].reshape((1, 3)).astype(np.float32)
X0 = encode_position_fn(torch.from_numpy(x0).to(device))
X1 = encode_position_fn(torch.from_numpy(x1).to(device))
pred = geo_nerf_model(X0, X1).cpu().numpy().reshape((-1,))
end_time = time.time()
avg_time = (end_time - start_time) / n_trials
print(f'Average time for geodesics for a given pair: {avg_time}')
def cast_to_image(tensor):
# Input tensor is (H, W, 3). Convert to (3, H, W).
tensor = tensor.permute(2, 0, 1)
# Conver to PIL Image and then np.array (output shape: (H, W, 3))
img = np.array(torchvision.transforms.ToPILImage()(tensor.detach().cpu()))
# Map back to shape (3, H, W), as tensorboard needs channels first.
img = np.moveaxis(img, [-1], [0])
return img
if __name__ == "__main__":
main()