forked from contrailcirrus/pycontrails
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflight_trajectory_fill.py
261 lines (218 loc) · 9.57 KB
/
flight_trajectory_fill.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import pandas as pd
from pycontrails import Flight, MetDataset
from matplotlib import pyplot as plt
import numpy as np
import os
import pandas as pd
import subprocess
import constants
from matplotlib import pyplot as plt
from pycontrails.datalib.ecmwf import ERA5, ERA5ModelLevel
from emission_index import p3t3_nox
from emission_index import p3t3_nvpm_meem, p3t3_nvpm_meem_mass, thrust_setting
import pickle
from pycontrails import Flight
from pycontrails.models.cocip import Cocip
from pycontrails.models.humidity_scaling import HistogramMatching, ExponentialBoostHumidityScaling
from pycontrails.models.ps_model import PSFlight
from pycontrails.models.emissions import Emissions
from pycontrails.datalib import ecmwf
from pycontrails.core.cache import DiskCacheStore
from pathlib import Path
import copy
import warnings
flight = 'sin_maa'
aircraft = 'A20N_full'
df = pd.read_csv(f"flight_trajectories/{flight}.csv")
df = df.rename(columns={'geoaltitude': 'altitude', 'groundspeed': 'groundspeed', 'timestamp':'time'})
callsign = df['callsign'].dropna().unique()[0]
df['altitude'] = df['altitude']*0.3048 #foot to meters
df['groundspeed'] = df['groundspeed']*0.514444444
attrs = {
"flight_id" : f"{callsign}",
"aircraft_type": f"{aircraft}",
"engine_uid": "01P22PW163"
}
from geopy.distance import geodesic
def load_and_preprocess(file_path):
# Load dataset
df = pd.read_csv(file_path)
# Convert timestamp to datetime format
df["time"] = pd.to_datetime(df["timestamp"])
# Convert geoaltitude from feet to meters
df["geoaltitude"] = df["geoaltitude"] * 0.3048
return df
def remove_static_rows(df):
# Identify and remove rows where latitude and longitude remain the same as the previous row
df["prev_latitude"] = df["latitude"].shift(1)
df["prev_longitude"] = df["longitude"].shift(1)
df = df[~((df["latitude"] == df["prev_latitude"]) & (df["longitude"] == df["prev_longitude"]))]
df = df.drop(columns=["prev_latitude", "prev_longitude"]).reset_index(drop=True)
return df
def create_full_timeline(df):
# Create a full second-by-second timeline
start_time = df["time"].min()
end_time = df["time"].max()
full_time_range = pd.date_range(start=start_time, end=end_time, freq="1S")
return pd.DataFrame({"time": full_time_range})
def merge_and_interpolate(df_full_time, df_cleaned):
# Merge flight data into the full timeline
df_merged = df_full_time.merge(df_cleaned, on="time", how="left")
# Interpolate missing values for latitude, longitude, and geoaltitude
df_merged["latitude"] = df_merged["latitude"].interpolate(method="linear")
df_merged["longitude"] = df_merged["longitude"].interpolate(method="linear")
df_merged["geoaltitude"] = df_merged["geoaltitude"].interpolate(method="linear")
return df_merged
def remove_outliers(df, column, threshold):
df = df.copy()
df["diff"] = df[column].diff().abs()
df.loc[df["diff"] > threshold, column] = np.nan
df[column] = df[column].interpolate(method="linear")
df = df.drop(columns=["diff"])
return df
def compute_segment_lengths(df):
segment_lengths = []
timestamps = []
for i in range(1, len(df)):
p1 = df.iloc[i - 1]
p2 = df.iloc[i]
horizontal_distance = geodesic((p1["latitude"], p1["longitude"]), (p2["latitude"], p2["longitude"])).meters
vertical_distance = abs(p2["geoaltitude"] - p1["geoaltitude"]) if not pd.isna(
p1["geoaltitude"]) and not pd.isna(p2["geoaltitude"]) else 0
total_distance = np.sqrt(horizontal_distance ** 2 + vertical_distance ** 2)
segment_lengths.append(total_distance)
timestamps.append(p2["time"])
return timestamps, segment_lengths
def resample_to_60s(df):
return df.set_index("time").resample("60S").first().reset_index()
def plot_data(df, timestamps, segment_lengths):
plt.figure(figsize=(12, 6))
plt.plot(df["time"], df["geoaltitude"], marker="o", linestyle="-", alpha=0.7,
label="Altitude Over Time (60s Resampled)")
plt.title("Altitude vs. Time After 60s Resampling")
plt.xlabel("Time")
plt.ylabel("Altitude (meters)")
plt.legend()
plt.grid(True)
plt.xticks(rotation=45)
# plt.show()
plt.figure(figsize=(12, 6))
plt.plot(timestamps, segment_lengths, marker="o", linestyle="-", alpha=0.7,
label="Segment Length (3D) - 60s Resampled")
plt.axhline(y=np.mean(segment_lengths), color='r', linestyle="--",
label=f"Mean Segment Length: {np.mean(segment_lengths):.2f} m")
plt.legend()
plt.title("Segment Length Over Time After 60s Resampling")
plt.xlabel("Timestamp")
plt.ylabel("Segment Length (meters)")
plt.grid(True)
plt.xticks(rotation=45)
# plt.show()
def process_flight(trajectory, flight_results):
# Construct file name from trajectory details
file_name = f"{trajectory['departure_airport'].lower()}_{trajectory['arrival_airport'].lower()}.csv"
# Read and preprocess the flight data
df = pd.read_csv(f"flight_trajectories/{flight}.csv")
df = df.rename(columns={'groundspeed': 'groundspeed', 'timestamp': 'time'})
df['geoaltitude'] = df['geoaltitude'] * 0.3048 # foot to meters
df['groundspeed'] = df['groundspeed'] * 0.514444444
df['time'] = pd.to_datetime(df['time'])
df = df.dropna(subset=['latitude', 'longitude', 'geoaltitude'])
df_pycontrails = df.copy()
df_pycontrails['altitude'] = df_pycontrails['geoaltitude']
df_cleaned = remove_static_rows(df)
df_full_time = create_full_timeline(df_cleaned)
df_interpolated = merge_and_interpolate(df_full_time, df_cleaned)
df_interpolated = remove_outliers(df_interpolated, "geoaltitude", 200)
df_interpolated = remove_outliers(df_interpolated, "latitude", 0.01)
df_interpolated = remove_outliers(df_interpolated, "longitude", 0.01)
df_resampled_60 = resample_to_60s(df_interpolated)
timestamps, segment_lengths = compute_segment_lengths(df_resampled_60)
plot_data(df_resampled_60, timestamps, segment_lengths)
# df= df.dropna(subset=['latitude', 'longitude', 'altitude'])
fl = Flight(df_pycontrails, attrs=attrs)
fl.plot_profile(kind="scatter", s=5, figsize=(10, 6))
fl.plot(kind="scatter", s=5, figsize=(10, 6))
fl_segment = fl.segment_length()
plt.figure()
plt.plot(fl.dataframe['time'], fl_segment, marker='o', linestyle='-', label='Segment Length')
plt.title('Segment Length Before Resample')
plt.xlabel('Time in Minutes')
plt.ylabel('Segment Length (m)')
# plt.legend()
plt.grid(True)
# plt.show()
# fl = Flight(df_pycontrails, attrs=attrs)
df_cleaned_p = remove_static_rows(df_pycontrails)
# df_full_time_p = create_full_timeline(df_cleaned_p)
# df_interpolated_p = merge_and_interpolate(df_full_time_p, df_cleaned_p)
fl = Flight(df_cleaned_p, attrs=attrs)
fl = fl.resample_and_fill(freq="60s", drop=False, fill_method='geodesic', geodesic_threshold=1e3)
fl.plot_profile(kind="scatter", s=5, figsize=(10, 6))
fl.plot(kind="scatter", s=5, figsize=(10, 6))
print('flight length', fl.length)
# print('segment_lengths', fl.segment_length()[:-1].max())
fl_segment = fl.segment_length()
plt.figure()
plt.plot(fl.dataframe['time'], fl_segment, marker='o', linestyle='-', label='Segment Length')
plt.title('segment length after resample')
plt.xlabel('Time in minutes')
plt.ylabel('segment length m')
plt.legend()
plt.grid(True)
plt.show()
# """------RETRIEVE METEOROLOGIC DATA----------------------------------------------"""
#
# # time_bounds = ("2024-06-07 9:00", "2024-06-08 02:00")
#
# pressure_levels_10 = np.arange(150, 400, 10) # 150 to 400 with steps of 10
# pressure_levels_50 = np.arange(400, 1001, 50) # 400 to 1000 with steps of 50
# pressure_levels_model = np.concatenate((pressure_levels_10, pressure_levels_50))
#
# if flight == 'malaga':
# local_cache_dir = Path("F:/era5model/malaga")
# variables_model = ("t", "q", "u", "v", "w", "ciwc", "vo", "clwc")
# else:
# local_cache_dir = Path("F:/era5model/flights")
# variables_model = ("t", "q", "u", "v", "w", "ciwc")
#
# local_cachestore = DiskCacheStore(cache_dir=local_cache_dir)
#
# era5ml = ERA5ModelLevel(
# time=time_bounds,
# variables=variables_model,
# model_levels=range(67, 133),
# pressure_levels=pressure_levels_model,
# cachestore=local_cachestore
# )
# # era5sl = ERA5(time=time_bounds, variables=Cocip.rad_variables + (ecmwf.SurfaceSolarDownwardRadiation,))
#
# # download data from ERA5 (or open from cache)
# met = era5ml.open_metdataset()
# # Extract min/max longitude and latitude from the dataframe
# west = fl.dataframe["longitude"].min() - 50 # Subtract 1 degree for west buffer
# east = fl.dataframe["longitude"].max() + 50 # Add 1 degree for east buffer
# south = fl.dataframe["latitude"].min() - 50 # Subtract 1 degree for south buffer
# north = fl.dataframe["latitude"].max() + 50 # Add 1 degree for north buffer
#
# # Define the bounding box with altitude range
# bbox = (west, south, 150, east, north, 1000) # (west, south, min-level, east, north, max-level)
# met = met.downselect(bbox=bbox)
# met_ps = copy.deepcopy(met)#era5ml.open_metdataset() # meteorology
# met_emi = copy.deepcopy(met)
# # rad = era5sl.open_metdataset() # radiation
#
#
# # fl_test = copy.deepcopy(fl)
# # print(fl_test.intersect_met(met_ps['specific_humidity']))
# """-----RUN AIRCRAFT PERFORMANCE MODEL--------------------------------------------"""
#
# perf = PSFlight(
# met=met_ps,
# fill_low_altitude_with_isa_temperature=True, # Estimate temperature using ISA
# fill_low_altitude_with_zero_wind=True
# )
# fp = perf.eval(fl)
# df_p = fp.dataframe
# df_p.update(df_p.select_dtypes(include=[np.number]).interpolate(method='linear', limit_area='inside'))
# fp = Flight(df_p, attrs=attrs)