-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdoRecursiveFeatureElemination_bootstrapping_SVM.m
executable file
·546 lines (436 loc) · 24.8 KB
/
doRecursiveFeatureElemination_bootstrapping_SVM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
% [DO NOT USE: UNDER DEVELOPEMENT!] Recursively removes features according to SVM classification weights (parallel execution).
%
% Author: Maurice Hollmann
% Date : 09/10
%
% Description:
%
% [dataset, resultStruct, avg_rfe_weightMap, avg_rfe_featureSelectionMap, rfe_weightMaps, rfe_featureSelectionMaps] = doRecursiveFeatureElemination_SVM(dataset, nmbIterations, thresholdPercentOfFeaturesOut, dataSplitter, kernelMode, costParam, [paramStruct])
%
% This high-level function implements a recursive feature elemination (RFE) using a Support Vector Machine (SVM).
% This means that voxels that hold no or just little information for classification are removed to recursively improve
% classification performance.
% The algorithm is basically a LeaveOneOutCrossValidation and the given dataSplitter defines the test/training
% sets in every single run. Which means that the test results returned with "resultStruct" can be used to estimate
% the overall classification performance of the given SVM-classifier.
%
% For every iteration the following is done:
% For all splits(nmbSplits) in "dataSplitter" the data is splitted into training and test sets. In every training set the
% features are selected SEPERATELY according to the input parameter "thresholdPercentOfFeaturesOut". And the test set is
% classified with the trained model.
%
% That means there are nSplits models trained and every model has its own INDEPENDENT feature selection. For all this single
% selections a selectionMap is the result and these are returnd by the parameter "avg_rfe_featureSelectionMap". The same holds
% for the weights trained in every single model. This ensures that no information between test and training data is transferred.
%
% The average maps for weights and featureSelectionMaps are returned also:
% BUT BE AWARE: These may not be used as feature selection maps for further classification on the same dataset, because of
% information transfer!
%
% To see the classification-performance during the RFE see the output on command line (If "quietMode" is switched off).
%
% The returned classification results may not be the best because always the LAST iteration sets the returned resultStruct. If
% an intermediate iteration is best run this function again with this iteration-nmb-1 as input and then use the results.
%
% The best performing iteration having the lowest number of features and all in between will be stored in additional info string
% in resultStruct (May be displayed using "printResultStruct(...)") and as capsuled resultStruct in field resultStruct.innerResultStruct.
%
% If possible, the function executes parallelized depending on settings defined via easyupMVPA_init().
%
% Parameters:
% dataset - the datset to set the classIDs for
% nmbIterations - iterations (how often is basic feature set reduced by "thresholdPercentOfFeaturesOut")
% thresholdPercentOfFeaturesOut - percentual value of non-zero elements in weight map that should be cut (suggestion btw. 10 and 50)
% dataSplitter - describes the splitting of the data in the background LOOCV
% kernelMode - Kernels: ['linear', 'polynomial', 'radial', 'sigmoid']
% costParam - The slack variable C in SVM (range 0 to 1 0 = low cost, 1 = highest costs).
% It defines the costs for misclassification (How strongly are outliers punished?).
% paramStruct - [optional] i.e. {"degree", 3}
%
% Returns:
% dataset - In this dataset the field "featureSelectionMap" is updated to the result of this RFE
% resultStruct - The struct holding the classification results:
% resultStruct.nmbTests (the number of samples tested for this result)
% resultStruct.accuracy (percentual value of correct predictions (correct * 100 / nmbSamples))
% resultStruct.sensitivity (TP/TP+FN = Proportion of true positives to all positives)
% resultStruct.specificity (TN/TN+FP = Proportion of true negatives to all negatives)
% resultStruct.TP (True positives = all correct predicted in class 1)
% resultStruct.TN (True negatives = all correct predicted in class 2)
% resultStruct.FP (False positives = all incorrect predicted in class 1)
% resultStruct.FN (False negatives = all incorrect predicted in class 2)
% avg_rfe_weightMap - Average map of the weights of the models trained (always determined in the last iteration - Dimension: Featurespace)
% avg_rfe_featureSelectionMap - Average map of the selected features of the models trained (always determined in the last iteration - Dimension: Featurespace)
% rfe_weightMaps - All all weight maps that are used in the last iteration (Dimension: Featurespace x nmbSplits)
% rfe_featureSelectionMaps - All feature-SelectionMaps (elements just 0 or 1) that are used in the last iteration (Dimension: Featurespace x nmbSplits)
%
% Comments:
%
function [dataset, resultStruct, avg_rfe_weightMap, avg_rfe_featureSelectionMap, rfe_weightMaps, rfe_featureSelectionMaps] = doRecursiveFeatureElemination_bootstrapping_SVM(dataset, nmbBootstrapIterations, nmbIterations, thresholdPercentOfFeaturesOut, dataSplitter, kernelMode, costParam, paramStruct)
if( ~exist('dataset','var') || ~exist('nmbIterations','var') || ~exist('thresholdPercentOfFeaturesOut','var') || ~exist('dataSplitter','var') || ~exist('kernelMode','var') || ~exist('costParam','var'))
error('Usage of doRecursiveFeatureElemination_SVM: [dataset, resultStruct, avg_rfe_weightMap, avg_rfe_featureSelectionMap, rfe_weightMaps, rfe_featureSelectionMaps] = doRecursiveFeatureElemination_SVM(dataset, nmbIterations, thresholdPercentOfFeaturesOut - [0-100%], dataSplitter, kernelMode - [linear, polynomial, radial, sigmoid] , costParam [0-1], paramStruct [optional - i.e. {"degree", 3}])');
end
%extractt the SVM parameter values from paramStruct
if( ~exist('paramStruct','var'))
[paramStructIsValid, svmParamInfoStruct, cmdString] = getSVMParamInfo(kernelMode, costParam, {});
else
[paramStructIsValid, svmParamInfoStruct, cmdString] = getSVMParamInfo(kernelMode, costParam, paramStruct);
end
if( ~paramStructIsValid)
error('Usage of doRecursiveFeatureElemination_SVM: [dataset] = doRecursiveFeatureElemination_SVM(dataset, nmbIterations, thresholdPercentOfFeaturesOut - [0-100%], dataSplitter, kernelMode - [linear, polynomial, radial, sigmoid] , costParam [0-1], paramStruct [optional - i.e. {"degree", 3}])');
end
%use quiet mode (no outputs)
cmdString = [cmdString, ' -q '];
if(thresholdPercentOfFeaturesOut < 0 || thresholdPercentOfFeaturesOut > 100)
error('Usage of doRecursiveFeatureElemination_SVM: [dataset] = doRecursiveFeatureElemination_SVM(dataset, nmbIterations, thresholdPercentOfFeaturesOut - [0-100%], dataSplitter, kernelMode - [linear, polynomial, radial, sigmoid] , costParam [0-1], paramStruct [optional - i.e. {"degree", 3}])');
end
localQuietMode = easyupMVPA_getGlobals('quietMode');
if(~localQuietMode)
disp('Running Recursive Feature Elemination (This may take a while!) ...');
end
%extract the number of splits that are used
nmbSplits = size(dataSplitter.splitMatrix,1);
resultStruct = {};
%check if there is a global feature selection map is given, if yes all
%the following steps are computed solely on these selected features
if(dataset.is4D)
sizeData = size(dataset.data);
%4D case
if(isfield(dataset,'featureSelectionMap') && ~isempty(dataset.featureSelectionMap))
globalSelectionMap = dataset.featureSelectionMap;
elseif(isfield(dataset,'mask') && ~isempty(dataset.mask))
globalSelectionMap = dataset.mask;
else
globalSelectionMap = ones(sizeData(1)*sizeData(2)*sizeData(3));
end
%this array will hold all selection maps used for every single model
%in the different splits
rfe_featureSelectionMaps = zeros(sizeData(1),sizeData(2),sizeData(3),nmbSplits);
rfe_weightMaps = zeros(sizeData(1),sizeData(2),sizeData(3),nmbSplits);
%if nmb iterations is higher than number of features set it to nmbFeatures-1
if(nmbIterations >= sizeData(1)*sizeData(2)*sizeData(3))
warning('Number of iterations is higher than number of features. Setting to nmbFeatures - 1 !');
nmbIterations = sizeData(1)*sizeData(2)*sizeData(3) - 1;
end
elseif(dataset.is2D)
%2D case
if(isfield(dataset,'featureSelectionMap') && ~isempty(dataset.featureSelectionMap))
globalSelectionMap = dataset.featureSelectionMap;
elseif(isfield(dataset,'mask') && ~isempty(dataset.mask))
globalSelectionMap = dataset.mask;
else
globalSelectionMap = ones(size(dataset.data,1),1);
end
%this array will hold all selection maps used for every single model
%in the different splits
sizeData = size(dataset.data);
rfe_featureSelectionMaps = zeros(sizeData(1),nmbSplits);
rfe_weightMaps = zeros(sizeData(1),nmbSplits);
%if nmb iterations is higher than number of features set it to nmbFeatures-1
if(nmbIterations >= sizeData(1))
warning('Number of iterations is higher than number of features. Setting to nmbFeatures - 1 !');
nmbIterations = sizeData(1) - 1;
end
else
error('RFE: Please check the dataset: field "type" is not defined!');
end
if(~localQuietMode)
disp(['Running Recursive Feature Elemination with command string: ',cmdString,' ...']);
end
%get the selected voxels of this iteration to show them
actTotalNmbIn = zeros(1, nmbSplits, 'int16');
actTotalNmbOut = zeros(1, nmbSplits, 'int16');
%run over iterations (+1 is for the prediction of the last choice of features)
for i = 1:nmbIterations+1
if(~localQuietMode)
if(i<=nmbIterations)
disp(['Started iteration ', num2str(i),' ...']);
h = waitbar((i-1)/(nmbIterations+1), ['Running Recursive Feature Elemination Iteration: ', num2str(i)]);
else
disp('Started final Prediction ...');
h = waitbar((i-1)/(nmbIterations+1), 'Running Recursive Feature Elemination Final Prediction...');
end
end
%every iteration has its own tests over
%nmbOfSplits examples
nmbCorrect = 0;
nmbTests = 0;
nmbTruePosAll = 0;
nmbTrueNegAll = 0;
nmbFalsePosAll = 0;
nmbFalseNegAll = 0;
%distinct parfors for 4D and 2D because of parallelization
if(dataset.is4D)
%******** 4D Case ************
if(~localQuietMode)
disp(['Running Leave One Out Cross Validation with command string: ',cmdString,' ...']);
% create a progress display that works also for parallel loops
if(nmbSplits <50)
disp(['0%', num2str(repmat(' ',1,nmbSplits-1)),'100%']);
progressIndices = [1 1:nmbSplits];
else
disp(['0%', num2str(repmat(' ',1,50)),'100%']);
%create a vector with floored indicees for repetitions
progressIndices = [1 1:nmbSplits];
progressIndices = floor(progressIndices*(50/nmbSplits));
end
fprintf(' ');
end
parfor j=1:nmbSplits
if(~localQuietMode)
if(progressIndices(j)<progressIndices(j+1))
fprintf('\b\b*');
disp(['' 0]);
end
end
%at first split the dataset according to given splitting
ds1Indices = dataSplitter.splitMatrix(j,:) == 1; %test data
ds2Indices = dataSplitter.splitMatrix(j,:) == 2; %train data
[ds1, ds2] = splitDataset(dataset, ds1Indices, ds2Indices );
%the first iteration, that means there is no
%rfe selection map available and data can be restricted to
%the globalSelectionMap
if(i == 1)
ds1 = setDataset_featureSelectionMap_ByMatrix(ds1, globalSelectionMap);
ds2 = setDataset_featureSelectionMap_ByMatrix(ds2, globalSelectionMap);
[ds1, testData2D] = selectFeaturesBySelectionMap(ds1);
[ds2, trainData2D] = selectFeaturesBySelectionMap(ds2);
else
%not the first iteration, we expect a rfe selection to be set for this split
%so restrict data to this features
ds1 = setDataset_featureSelectionMap_ByMatrix(ds1, rfe_featureSelectionMaps(:,:,:,j));
ds2 = setDataset_featureSelectionMap_ByMatrix(ds2, rfe_featureSelectionMaps(:,:,:,j));
[ds1, testData2D] = selectFeaturesBySelectionMap(ds1);
[ds2, trainData2D] = selectFeaturesBySelectionMap(ds2);
end
%*** TRAINING ***
svmModel = svmtrain(double(ds2.classIDs)', trainData2D, cmdString);
%*** TESTING ***
%predict the class ID of the test data
%check if the model was trained with probability estimates
if(~isempty(svmModel.ProbA) && ~isempty(svmModel.ProbB))
[predicted_labels, accuracy, probEst] = svmpredict(double(ds1.classIDs)', testData2D, svmModel, '-b 1');
%disp(probEstimatesVector);
else
[predicted_labels, accuracy, probEst] = svmpredict(double(ds1.classIDs)', testData2D, svmModel);
%disp(decisionValues);
end
cVec = predicted_labels' == ds1.classIDs;
nmbTruePos = sum(cVec(ds1.classIDs==1));
nmbTrueNeg = sum(cVec(ds1.classIDs==0));
nmbFalsePos = sum(ds1.classIDs) - sum(predicted_labels);
if(nmbFalsePos < 0)
nmbFalsePos = abs(nmbFalsePos);
else
nmbFalsePos = 0;
end
nmbFalseNeg = length(ds1.classIDs) - nmbTrueNeg - nmbFalsePos - nmbTruePos;
nmbCorrect = nmbCorrect+nmbTruePos+nmbTrueNeg;
nmbTruePosAll = nmbTruePosAll+nmbTruePos;
nmbTrueNegAll = nmbTrueNegAll+nmbTrueNeg;
nmbFalsePosAll = nmbFalsePosAll+nmbFalsePos;
nmbFalseNegAll = nmbFalseNegAll+nmbFalseNeg;
nmbTests = nmbTests+length(ds1.classIDs);
%Do a new selection based on the weights
%but just for the nmb of iterations
if(i <= nmbIterations)
%*** SET THE SELECTION MAP ***
%extract the weights
tmpWeights = zeros(sizeData(1),sizeData(2),sizeData(3),1);
weights = svmModel.SVs' * svmModel.sv_coef;
tmpWeights(ds2.featureSelectionMap >0) = weights;
%for selecting the best features use bootstrap
%tic
[descrim_vec, descrimsMean, boot_se, boot_CI, boot_ipred, boot_gpred] = ...
svm_632boot_unique( double(trainData2D), double(ds2.classIDs), nmbBootstrapIterations, 0.5, true );
%toc
tmpWeights(ds2.featureSelectionMap >0) = abs(descrimsMean);
showDataAsImage(tmpWeights, 'bsWeights');
%keyboard;
%remove the features according to percentual selection threshold
[weightsRes, totalNmbIn, totalNmbOut] = member_getSelectedMapByThresholdPercentOut(tmpWeights, thresholdPercentOfFeaturesOut);
actTotalNmbIn(j) = totalNmbIn;
actTotalNmbOut(j) = totalNmbOut;
featSelMap = weightsRes;
featSelMap(weightsRes>0)=1;
featSelMap(weightsRes<0)=1;
rfe_featureSelectionMaps(:,:,:,j) = featSelMap;
%save the weight maps
rfe_weightMaps(:,:,:,j) = weightsRes;
end % endif nmb iteration
end % endfor nmbSplits (parfor)
if(~localQuietMode)
fprintf('\n');
end
else %******** 2D Case ************
if(~localQuietMode)
disp(['Running Leave One Out Cross Validation with command string: ',cmdString,' ...']);
disp(['0%', num2str(repmat(' ',1,nmbSplits)),'100%']);
disp(' ');
end
parfor j=1:nmbSplits
if(~localQuietMode)
fprintf('\b\b*');
disp(['' 0]);
end
%at first split the dataset according to given
ds1Indices = dataSplitter.splitMatrix(j,:) == 1; %test data
ds2Indices = dataSplitter.splitMatrix(j,:) == 2; %train data
[ds1, ds2] = splitDataset(dataset, ds1Indices, ds2Indices );
%the first iteration, that means there is no
%rfe selection map available and data can be restricted to
%the globalSelectionMap
if(i == 1)
ds1 = setDataset_featureSelectionMap_ByMatrix(ds1, globalSelectionMap);
ds2 = setDataset_featureSelectionMap_ByMatrix(ds2, globalSelectionMap);
[ds1, testData2D] = selectFeaturesBySelectionMap(ds1);
[ds2, trainData2D] = selectFeaturesBySelectionMap(ds2);
else
%not the first iteration, we expect a rfe selection to be set for this split
%so restrict data to this features
ds1 = setDataset_featureSelectionMap_ByMatrix(ds1, rfe_featureSelectionMaps(:,j));
ds2 = setDataset_featureSelectionMap_ByMatrix(ds2, rfe_featureSelectionMaps(:,j));
[ds1, testData2D] = selectFeaturesBySelectionMap(ds1);
[ds2, trainData2D] = selectFeaturesBySelectionMap(ds2);
end
%*** TRAINING ***
svmModel = svmtrain(double(ds2.classIDs)', trainData2D, cmdString);
%*** TESTING ***
%predict the class ID of the test data
%check if the model was trained with probability estimates
if(~isempty(svmModel.ProbA) && ~isempty(svmModel.ProbB))
[predicted_labels, accuracy, probEst] = svmpredict(double(ds1.classIDs)', testData2D, svmModel, '-b 1');
%disp(probEstimatesVector);
else
[predicted_labels, accuracy, probEst] = svmpredict(double(ds1.classIDs)', testData2D, svmModel);
%disp(decisionValues);
end
%count correct predictions for statistics
cVec = predicted_labels' == ds1.classIDs;
nmbTruePos = sum(cVec(ds1.classIDs==1));
nmbTrueNeg = sum(cVec(ds1.classIDs==0));
nmbFalsePos = sum(ds1.classIDs) - sum(predicted_labels);
if(nmbFalsePos < 0)
nmbFalsePos = abs(nmbFalsePos);
else
nmbFalsePos = 0;
end
nmbFalseNeg = length(ds1.classIDs) - nmbTrueNeg - nmbFalsePos - nmbTruePos;
nmbCorrect = nmbCorrect+nmbTruePos+nmbTrueNeg;
nmbTruePosAll = nmbTruePosAll+nmbTruePos;
nmbTrueNegAll = nmbTrueNegAll+nmbTrueNeg;
nmbFalsePosAll = nmbFalsePosAll+nmbFalsePos;
nmbFalseNegAll = nmbFalseNegAll+nmbFalseNeg;
nmbTests = nmbTests+length(ds1.classIDs);
%Do a new selection based on the weights
%but just for the nmb of iterations
if(i <= nmbIterations)
%*** SET THE SELECTION MAP ***
%extract the weights
tmpWeights = zeros(sizeData(1),1);
weights = svmModel.SVs' * svmModel.sv_coef;
tmpWeights(ds2.featureSelectionMap >0) = weights;
%remove the features according to percentual selection threshold
[weightsRes, totalNmbIn, totalNmbOut] = member_getSelectedMapByThresholdPercentOut(tmpWeights, thresholdPercentOfFeaturesOut);
actTotalNmbIn(j) = totalNmbIn;
actTotalNmbOut(j) = totalNmbOut;
featSelMap = weightsRes;
featSelMap(weightsRes>0)=1;
featSelMap(weightsRes<0)=1;
rfe_featureSelectionMaps(:,j) = featSelMap;
%save the weight maps
rfe_weightMaps(:,j) = weightsRes;
end % endif nmb iteration
end % endfor nmbSplits
if(~localQuietMode)
fprintf('\n');
end
end %endif 4D/2D case
%For every iteration we get stat results
accuracy = nmbCorrect/nmbTests*100;
sensitivity = nmbTruePosAll/(nmbTruePosAll+nmbFalseNegAll);
specificity = nmbTrueNegAll/(nmbTrueNegAll+nmbFalsePosAll);
resultStruct = {};
resultStruct.nmbTests = nmbTests;
resultStruct.accuracy = accuracy;
resultStruct.sensitivity = sensitivity;
resultStruct.specificity = specificity;
resultStruct.TP = nmbTruePosAll;
resultStruct.TN = nmbTrueNegAll;
resultStruct.FP = nmbFalsePosAll;
resultStruct.FN = nmbFalseNegAll;
%if(isfield(resultStruct, 'innerResultStruct') && ~isempty(resultStruct.innerResultStruct))
if(~isfield(resultStruct, 'innerResultStruct') || isempty(resultStruct.innerResultStruct) || accuracy >= resultStruct.innerResultStruct.accuracy)
resultStruct.innerResultStruct.nmbTests = nmbTests;
resultStruct.innerResultStruct.accuracy = accuracy;
resultStruct.innerResultStruct.sensitivity = sensitivity;
resultStruct.innerResultStruct.specificity = specificity;
resultStruct.innerResultStruct.TP = nmbTruePosAll;
resultStruct.innerResultStruct.TN = nmbTrueNegAll;
resultStruct.innerResultStruct.FP = nmbFalsePosAll;
resultStruct.innerResultStruct.FN = nmbFalseNegAll;
resultStruct.innerResultStruct.infoString = ['This struct holds RFE maximum performance results (iteration ',num2str(i),' used nmb of features: ',num2str(actTotalNmbOut(end)),').'];
end
if(isfield(resultStruct, 'infoString'))
resultStruct.infoString = [resultStruct.infoString, ' * ', 'RFE:Iteration ', num2str(i), ' Accuracy: ', num2str(accuracy), '% NmbFeatures: ', num2str(actTotalNmbOut(end))];
else
resultStruct.infoString = ['RFE:Iteration ', num2str(i), 'Accuracy: ', num2str(accuracy), '% NmbFeatures: ', num2str(actTotalNmbOut(end))];
end
if(~easyupMVPA_getGlobals('quietMode'))
close(h);
if(i==1)
disp(['RFE with ', num2str(nmbSplits),' Split(s). Selected all features for classification:']);
else
disp(['RFE with ', num2str(nmbSplits),' Split(s). Selected ' ,num2str(actTotalNmbOut(end)),' out of ',num2str(actTotalNmbIn(end)),' features for classification:']);
end
printResultStruct(resultStruct);
end
end %enfor iterations
%THE LAST SUPPER
%create the mean images and estimate deviation
if(dataset.is4D)
avg_rfe_featureSelectionMap = zeros(sizeData(1),sizeData(2),sizeData(3),1);
avg_rfe_weightMap = zeros(sizeData(1),sizeData(2),sizeData(3),1);
parfor i=1:nmbSplits
avg_rfe_featureSelectionMap = avg_rfe_featureSelectionMap + rfe_featureSelectionMaps(:,:,:,i);
avg_rfe_weightMap = avg_rfe_weightMap + rfe_weightMaps(:,:,:,i);
end
%set the last rfe selection map for returned dataset
dataset = setDataset_featureSelectionMap_ByMatrix(dataset, rfe_featureSelectionMaps(:,:,:,end));
elseif(dataset.is2D)
avg_rfe_featureSelectionMap = zeros(sizeData(1),1);
avg_rfe_weightMap = zeros(sizeData(1),1);
parfor i=1:nmbSplits
avg_rfe_featureSelectionMap = avg_rfe_featureSelectionMap + rfe_featureSelectionMaps(:,i);
avg_rfe_weightMap = avg_rfe_weightMap + rfe_weightMaps(:,i);
end
%set the last rfe selection map for returned dataset
dataset = setDataset_featureSelectionMap_ByMatrix(dataset, rfe_featureSelectionMaps(:,end));
end
avg_rfe_featureSelectionMap = avg_rfe_featureSelectionMap/nmbSplits;
avg_rfe_weightMap = avg_rfe_weightMap/nmbSplits;
end %end function
%member function to select a certain amount of elements from a 3D map
function [mapOut, totalNmbIn, totalNmbOut] = member_getSelectedMapByThresholdPercentOut(mapIn, thresholdPercentOfElementsOut)
mapOut = mapIn;
%overall nmb of non-zero-elements
totalNmbIn = sum(mapIn(:)~=0);
%avgWeights3D = avgWeights3D + tmpWeights3D*(1/nmbSamples);
%now set the rfe selection for this split to the according features
%nmb of voxels to throw out
nmbOut = floor(totalNmbIn*thresholdPercentOfElementsOut/100);
if(nmbOut == 0)
if(totalNmbIn<2)
warning('Could not select features by given threshold. Not enough input features.');
return;
else
nmbOut = 2;
end
end
%a sorted array to get the value for selection
tmp = sort(abs(mapIn(mapIn(:)~=0)));
selThresh = tmp(nmbOut);
tmpMap = abs(mapIn);
tmpMap(tmpMap<selThresh) = 0;
mapOut(tmpMap==0) = 0;
totalNmbOut = sum(mapOut(:)~=0);
end %end member_getSelectedMapByThresholdPercentOut