-
Notifications
You must be signed in to change notification settings - Fork 965
/
Copy pathkeras2_parser.py
793 lines (548 loc) · 25.4 KB
/
keras2_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
#----------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for license information.
#----------------------------------------------------------------------------------------------
import os
from six import string_types as _string_types
import keras as _keras
from keras import backend as _K
from mmdnn.conversion.keras.keras2_graph import Keras2Graph
import mmdnn.conversion.common.IR.graph_pb2 as graph_pb2
from mmdnn.conversion.common.IR.graph_pb2 import NodeDef, GraphDef, DataType
from mmdnn.conversion.common.DataStructure.parser import Parser
from mmdnn.conversion.common.utils import *
class Keras2Parser(Parser):
dtype_map = {
"float16" : graph_pb2.DT_FLOAT16,
"float32" : graph_pb2.DT_FLOAT32,
"float64" : graph_pb2.DT_FLOAT64,
"int16" : graph_pb2.DT_INT16,
"int32" : graph_pb2.DT_INT32,
"int64" : graph_pb2.DT_INT64,
"uint8" : graph_pb2.DT_UINT8,
"uint16" : graph_pb2.DT_UINT16
}
activation_map = {
"relu" : "Relu",
'softmax' : "Softmax",
'sigmoid' : "Sigmoid",
"tanh" : "Tanh",
"elu" : "Elu",
"relu6" : "Relu6",
'softplus' : 'Softplus',
'softsign' : 'Softsign',
'hard_sigmoid' : 'HardSigmoid'
}
def _load_model(self, model_network_path, model_weight_path):
"""Load a keras model from disk
Parameters
----------
model_network_path: str
Path where the model network path is (json file)
model_weight_path: str
Path where the model network weights are (hd5 file)
Returns
-------
model: A keras model
"""
from keras.models import model_from_json
# Load the model network
json_file = open(model_network_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
# Load the model weights
try:
from keras.applications.mobilenet import relu6
from keras.applications.mobilenet import DepthwiseConv2D
loaded_model = model_from_json(loaded_model_json, custom_objects={
'relu6': _keras.applications.mobilenet.relu6,
'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D})
except:
import keras.layers as layers
loaded_model = model_from_json(loaded_model_json, custom_objects={
'relu6': layers.ReLU(6, name='relu6'),
'DepthwiseConv2D': layers.DepthwiseConv2D})
if model_weight_path:
if os.path.isfile(model_weight_path):
loaded_model.load_weights(model_weight_path)
self.weight_loaded = True
print("Network file [{}] and [{}] is loaded successfully.".format(model_network_path, model_weight_path))
else:
print("Warning: Weights File [%s] is not found." % (model_weight_path))
return loaded_model
@property
def src_graph(self):
return self.keras_graph
def __init__(self, model):
super(Keras2Parser, self).__init__()
# load model files into Keras graph
if isinstance(model, _string_types):
try:
# Keras 2.1.6
from keras.applications.mobilenet import relu6
from keras.applications.mobilenet import DepthwiseConv2D
model = _keras.models.load_model(
model,
custom_objects={
'relu6': _keras.applications.mobilenet.relu6,
'DepthwiseConv2D': _keras.applications.mobilenet.DepthwiseConv2D
}
)
except:
# Keras. 2.2.2
import keras.layers as layers
model = _keras.models.load_model(
model,
custom_objects={
'relu6': layers.ReLU(6, name='relu6'),
'DepthwiseConv2D': layers.DepthwiseConv2D
}
)
self.weight_loaded = True
elif isinstance(model, tuple):
model = self._load_model(model[0], model[1])
else:
assert False
# _keras.utils.plot_model(model, "model.png", show_shapes = True)
# Build network graph
self.data_format = _keras.backend.image_data_format()
self.keras_graph = Keras2Graph(model)
self.keras_graph.build()
self.lambda_layer_count = 0
def gen_IR(self):
for layer in self.keras_graph.topological_sort:
current_node = self.keras_graph.get_node(layer)
node_type = current_node.type
if hasattr(self, "rename_" + node_type):
func = getattr(self, "rename_" + node_type)
func(current_node)
else:
print("KerasParser has not supported operator [%s]." % (node_type))
self.rename_UNKNOWN(current_node)
_K.clear_session()
@staticmethod
def _set_output_shape(source_node, IR_node):
shape = graph_pb2.TensorShape()
for dim in source_node.layer.output_shape:
new_dim = shape.dim.add()
new_dim.size = dim if dim else -1
IR_node.attr["_output_shapes"].list.shape.extend([shape])
@staticmethod
def _copy_and_reop(source_node, IR_node, new_op = None):
IR_node.name = source_node.name
IR_node.op = source_node.type if new_op == None else new_op
if hasattr(source_node.layer, "dtype"):
IR_node.attr["dtype"].type = Keras2Parser.dtype_map[source_node.layer.dtype]
Keras2Parser._set_output_shape(source_node, IR_node)
@staticmethod
def _copy_shape(source_node, target_node):
if hasattr(source_node, "output_shape"):
for dim in source_node.output_shape:
new_dim = target_node.attr["shape"].shape.dim.add()
new_dim.size = -1 if dim == None else dim
else:
target_node.attr["shape"].shape.unknown_rank = True
@staticmethod
def _convert_dataformat(source_node, target_node):
if source_node.keras_layer.data_format == 'channels_last':
target_node.attr["data_format"].s = "NHWC"
elif source_node.keras_layer.data_format == 'channels_first':
target_node.attr["data_format"].s = "NCHW"
else:
print("Warning: [%s] don't have data format info." % (source_node.keras_layer.name))
@staticmethod
def _convert_padding(source_node, IR_node):
# TODO: Fused conv and pool with padding is different from defused operators
dims = len(source_node.layer.input_shape)
if source_node.layer.padding == 'valid':
assign_IRnode_values(IR_node, {'auto_pad' : "VALID", 'pads' : [0, 0] * dims})
elif source_node.layer.padding == 'same':
kernel_shape = source_node.layer.kernel_size if hasattr(source_node.layer, 'kernel_size') else source_node.layer.pool_size
padding = compute_tf_same_padding(
source_node.layer.input_shape,
kernel_shape,
list(source_node.layer.strides))
assign_IRnode_values(IR_node, {'auto_pad' : "SAME_LOWER", 'pads' : padding})
else:
assert False
def _defuse_activation(self, source_node):
if source_node.layer.activation is None or source_node.layer.activation.__name__ == "linear":
return
IR_node = self.IR_graph.node.add()
IR_node.name = source_node.real_name + "_activation"
IR_node.op = Keras2Parser.activation_map[source_node.layer.activation.__name__]
IR_node.input.append(source_node.real_name)
Keras2Parser._set_output_shape(source_node, IR_node)
# TODO: More activation functions
# for ELU
if hasattr(source_node.layer, 'alpha'):
assign_attr_value(IR_node['alpha'], source_node.layer.alpha)
source_node.real_name = IR_node.name
def _convert_convolution(self, source_node, dim):
IR_node = self.IR_graph.node.add()
# input edge
self.convert_inedge(source_node, IR_node)
# name, op
if source_node.type.startswith('Separable'):
Keras2Parser._copy_and_reop(source_node, IR_node, "SeparableConv")
if self.weight_loaded:
self.set_weight(source_node.name, 'depthwise_filter', source_node.layer.get_weights()[0])
self.set_weight(source_node.name, 'pointwise_filter', source_node.layer.get_weights()[1])
else:
if source_node.type.startswith('Conv'):
if source_node.type.endswith('Transpose'):
Keras2Parser._copy_and_reop(source_node, IR_node, "ConvTranspose")
else:
Keras2Parser._copy_and_reop(source_node, IR_node, "Conv")
elif source_node.type.startswith('Deconv'):
Keras2Parser._copy_and_reop(source_node, IR_node, "ConvTranspose")
elif source_node.type.startswith('Depthwise'):
Keras2Parser._copy_and_reop(source_node, IR_node, "DepthwiseConv")
else:
raise NotImplementedError("Convolution layer [{}] is not supported.".format(source_node.type))
# weights
if self.weight_loaded:
self.set_weight(source_node.name, "weights", source_node.layer.get_weights()[0])
if source_node.layer.use_bias:
self.set_weight(source_node.name, "bias", source_node.layer.get_weights()[1])
if isinstance(source_node.layer.kernel_size, int):
source_node.layer.kernel_size = (source_node.layer.kernel_size) * dim
if isinstance(source_node.layer.strides, int):
source_node.layer.strides = (source_node.layer.strides) * dim
if isinstance(source_node.layer.dilation_rate, int):
source_node.layer.dilation_rate = (source_node.layer.dilation_rate) * dim
kwargs = dict()
# pads
Keras2Parser._convert_padding(source_node, IR_node)
# filter
# [kd, kh, kw, channel_size, filter number]
in_channel = source_node.layer.input_shape[-1] if self.data_format == "channels_last" else source_node.layer.input_shape[1]
out_channel = source_node.layer.filters or source_node.layer.depth_multiplier
if source_node.type.startswith("Deconv"):
kwargs['kernel_shape'] = list(source_node.layer.kernel_size) + [out_channel, in_channel]
else:
kwargs['kernel_shape'] = list(source_node.layer.kernel_size) + [in_channel, out_channel]
# use_bias
kwargs['use_bias'] = source_node.keras_layer.use_bias
# strides
# [1, sd, sh, sw, 1]
kwargs['strides'] = [1] + list(source_node.layer.strides) + [1]
# dilations
# [1, dd, dh, dw, 1]
kwargs['dilations'] = [1] + list(source_node.layer.dilation_rate) + [1]
assign_IRnode_values(IR_node, kwargs)
# activation
self._defuse_activation(source_node)
def _convert_pooling(self, source_node, dim, pooling_type, is_global):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, "Pool")
# input edge
self.convert_inedge(source_node, IR_node)
kwargs = {}
kwargs['pooling_type'] = pooling_type
if is_global:
kwargs['global_pooling'] = True
kwargs['strides'] = [1] * (dim + 2)
else:
if isinstance(source_node.layer.pool_size, int):
source_node.layer.pool_size = (source_node.layer.pool_size) * dim
if isinstance(source_node.layer.strides, int):
source_node.layer.strides = (source_node.layer.strides) * dim
# padding
self._convert_padding(source_node, IR_node)
# strides
# [1, sd, sh, sw, 1]
kwargs['strides'] = [1] + list(source_node.layer.strides) + [1]
# window_shape
# [1, pd, ph, pw, 1]
kwargs['kernel_shape'] = [1] + list(source_node.layer.pool_size) + [1]
assign_IRnode_values(IR_node, kwargs)
if is_global:
flatten_node = self.IR_graph.node.add()
flatten_node.name = source_node.name + '_flatten'
flatten_node.op = 'Flatten'
flatten_node.input.append(source_node.name)
Keras2Parser._set_output_shape(source_node, flatten_node)
source_node.real_name = flatten_node.name
def _convert_merge(self, source_node, new_name = None):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, new_name)
# input edge
self.convert_inedge(source_node, IR_node)
# For concat axis
if hasattr(source_node.layer, 'axis'):
axis = source_node.layer.axis
if int(axis) == -1:
axis = 3 if self.data_format == "channels_last" else 2
IR_node.attr['axis'].i = axis
return IR_node
def _convert_padding_api(self, source_node, IR_node, mode):
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, "Pad")
# input edge
self.convert_inedge(source_node, IR_node)
kwargs = dict()
kwargs['mode'] = mode
# padding
kwargs['pads'] = [0, 0]
for padding_pair in source_node.layer.padding:
kwargs['pads'].extend(padding_pair)
kwargs['pads'] += [0, 0]
kwargs['pads'] = convert_tf_pad_to_onnx(kwargs['pads'])
assign_IRnode_values(IR_node, kwargs)
def rename_UNKNOWN(self, source_node):
print (source_node.layer.get_config())
# only for training
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
def rename_Activation(self, keras_node):
IR_node = self.IR_graph.node.add()
# name, op
try:
Keras2Parser._copy_and_reop(keras_node, IR_node, self.activation_map[keras_node.keras_layer.activation.__name__])
except:
Keras2Parser._copy_and_reop(keras_node, IR_node, self.activation_map[keras_node.keras_layer.activation.name])
# input edge
self.convert_inedge(keras_node, IR_node)
# Merge Layers
def rename_Add(self, source_node):
self._convert_merge(source_node)
def rename_Conv1D(self, source_node):
self._convert_convolution(source_node, 1)
def rename_Conv1DTranspose(self, source_node):
self._convert_convolution(source_node, 1)
def rename_Conv2D(self, source_node):
self._convert_convolution(source_node, 2)
def rename_Conv2DTranspose(self, source_node):
self._convert_convolution(source_node, 2)
def rename_Conv3D(self, source_node):
self._convert_convolution(source_node, 3)
def rename_Conv3DTranspose(self, source_node):
self._convert_convolution(source_node, 3)
def rename_InputLayer(self, source_node):
# only for training
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, "DataInput")
# input edge
self.convert_inedge(source_node, IR_node)
# shape
Keras2Parser._copy_shape(source_node.keras_layer, IR_node)
def rename_GlobalMaxPooling1D(self, source_node):
self._convert_pooling(source_node, 1, "MAX", True)
def rename_GlobalMaxPooling2D(self, source_node):
self._convert_pooling(source_node, 2, "MAX", True)
def rename_GlobalMaxPooling3D(self, source_node):
self._convert_pooling(source_node, 3, "MAX", True)
def rename_GlobalAveragePooling1D(self, source_node):
self._convert_pooling(source_node, 1, "AVG", True)
def rename_GlobalAveragePooling2D(self, source_node):
self._convert_pooling(source_node, 2, "AVG", True)
def rename_GlobalAveragePooling3D(self, source_node):
self._convert_pooling(source_node, 3, "AVG", True)
def rename_MaxPooling1D(self, source_node):
self._convert_pooling(source_node, 1, "MAX", False)
def rename_MaxPooling2D(self, source_node):
self._convert_pooling(source_node, 2, "MAX", False)
def rename_MaxPooling3D(self, source_node):
self._convert_pooling(source_node, 3, "MAX", False)
def rename_AveragePooling1D(self, source_node):
self._convert_pooling(source_node, 1, "AVG", False)
def rename_AveragePooling2D(self, source_node):
self._convert_pooling(source_node, 2, "AVG", False)
def rename_AveragePooling3D(self, source_node):
self._convert_pooling(source_node, 3, "AVG", False)
def rename_Dropout(self, source_node):
# only for training
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
IR_node.attr["keep_prob"].f = source_node.keras_layer.rate
if source_node.keras_layer.seed != None:
IR_node.attr["seed"].i = source_node.keras_layer.seed
# Core Layers
def rename_Dense(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, "FullyConnected")
# input edge
self.convert_inedge(source_node, IR_node)
# units
IR_node.attr["units"].i = source_node.keras_layer.units
# use_bias
IR_node.attr["use_bias"].b = source_node.keras_layer.use_bias
# weights
if self.weight_loaded == True:
self.set_weight(source_node.name, 'weights', source_node.layer.get_weights()[0])
if IR_node.attr["use_bias"].b == True:
self.set_weight(source_node.name, 'bias', source_node.layer.get_weights()[1])
# activation
self._defuse_activation(source_node)
def rename_Flatten(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
def rename_UpSampling2D(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
# size
IR_node.attr["scales"].list.i.extend(source_node.keras_layer.size)
def rename_Embedding(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
# input_dim
IR_node.attr["input_dim"].i = source_node.keras_layer.input_dim
# output_dim
IR_node.attr["output_dim"].i = source_node.keras_layer.output_dim
# mask_zero
IR_node.attr["mask_zero"].b = source_node.keras_layer.mask_zero
# weights
if self.weight_loaded:
self.set_weight(source_node.name, 'embedding_weights', source_node.layer.get_weights()[0])
def rename_LSTM(self, keras_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(keras_node, IR_node)
# input edge
self.convert_inedge(keras_node, IR_node)
# units
IR_node.attr["units"].i = keras_node.keras_layer.units
# use_bias
IR_node.attr["use_bias"].b = keras_node.keras_layer.use_bias
# for Keras, drop_out and recurrent_dropout
IR_node.attr["dropout"].f = keras_node.keras_layer.dropout
IR_node.attr["recurrent_dropout"].f = keras_node.keras_layer.recurrent_dropout
# activation
self._defuse_activation(keras_node)
def rename_GRU(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node)
# input edge
self.convert_inedge(source_node, IR_node)
# units
IR_node.attr["units"].i = source_node.keras_layer.units
# activation
self._defuse_activation(source_node)
# weights
if self.weight_loaded:
self.set_weight(source_node.name, 'gru_weights', source_node.layer.get_weights()[0])
self.set_weight(source_node.name, 'gru_recurrent_weights', source_node.layer.get_weights()[1])
if source_node.layer.use_bias:
self.set_weight(source_node.name, "gru_bias", source_node.layer.get_weights()[2])
def rename_Multiply(self, source_node):
self._convert_merge(source_node, 'Mul')
def rename_Average(self, source_node):
# Kit TODO : need to search the tf
self._convert_merge(source_node, 'Avg')
def rename_Maximum(self, source_node):
self._convert_merge(source_node)
def rename_Concatenate(self, source_node):
IR_node = self._convert_merge(source_node, 'Concat')
def rename_Reshape(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, 'Reshape')
# input edge
self.convert_inedge(source_node, IR_node)
# for target shape
IR_node.attr["shape"].list.i.append(-1)
IR_node.attr["shape"].list.i.extend(source_node.layer.target_shape)
def rename_Lambda(self, source_node):
node_type = source_node.layer.name
if hasattr(self, "rename_" + node_type):
print ("Try to convert Lambda function [{}]".format(source_node.layer.name))
func = getattr(self, "rename_" + node_type)
func(source_node)
else:
raise NotImplementedError("Lambda layer [{}] in keras is not supported yet.".format(node_type))
def rename_BatchNormalization(self, keras_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(keras_node, IR_node, 'BatchNorm')
# input edge
self.convert_inedge(keras_node, IR_node)
# axis
IR_node.attr['axis'].i = keras_node.keras_layer.axis
IR_node.attr['scale'].b = keras_node.keras_layer.scale
IR_node.attr['bias'].b = keras_node.keras_layer.center
IR_node.attr['epsilon'].f = keras_node.layer.epsilon
if self.weight_loaded:
# Parameter arrangement in Keras: gamma, beta, mean, variance
idx = 0
# scale
if IR_node.attr['scale'].b:
self.set_weight(keras_node.name, "scale", keras_node.layer.get_weights()[idx])
idx += 1
# beta
if IR_node.attr['bias'].b:
self.set_weight(keras_node.name, "bias", keras_node.layer.get_weights()[idx])
idx += 1
# mean
self.set_weight(keras_node.name, "mean", keras_node.layer.get_weights()[idx])
# var
self.set_weight(keras_node.name, "var", keras_node.layer.get_weights()[idx + 1])
def rename_ZeroPadding2D(self, keras_node):
IR_node = self.IR_graph.node.add()
self._convert_padding_api(keras_node, IR_node, "constant")
def rename_SeparableConv2D(self, source_node):
self._convert_convolution(source_node, 2)
def rename_DepthwiseConv2D(self, source_node):
self._convert_convolution(source_node, 2)
def custom_relu6(x):
return _keras.relu(x, max_value=6)
def _convert_crop(self, source_node):
IR_node = self.IR_graph.node.add()
Keras2Parser._copy_and_reop(source_node, IR_node, "Crop")
self.convert_inedge(source_node, IR_node)
border = []
for i in source_node.layer.cropping:
for j in i:
border.append(j)
assign_IRnode_values(IR_node, {'border' : border})
def rename_Cropping1D(self, source_node):
self._convert_crop(source_node)
def rename_Cropping2D(self, source_node):
self._convert_crop(source_node)
def rename_Cropping3D(self, source_node):
self._convert_crop(source_node)
def rename_LeakyReLU(self, source_node):
IR_node = self.IR_graph.node.add()
Keras2Parser._copy_and_reop(source_node, IR_node, 'LeakyRelu')
self.convert_inedge(source_node, IR_node)
assign_IRnode_values(IR_node, {'alpha' : source_node.layer.alpha.tolist()})
def rename_ReLU(self, source_node):
IR_node = self.IR_graph.node.add()
max_value = source_node.layer.max_value
if max_value == 6.0:
Keras2Parser._copy_and_reop(source_node, IR_node, 'Relu6')
else:
Keras2Parser._copy_and_reop(source_node, IR_node, 'Relu')
assign_IRnode_values(IR_node, {'max_value' : max_value})
self.convert_inedge(source_node, IR_node)
def rename_space_to_depth_x2(self, source_node):
IR_node = self.IR_graph.node.add()
# name, op
Keras2Parser._copy_and_reop(source_node, IR_node, 'SpaceToDepth')
IR_node.name = "Lambda_{}".format(self.lambda_layer_count)
# input edge
self.convert_inedge(source_node, IR_node)
# for target shape
IR_node.attr["blocksize"].i = 2
self.lambda_layer_count = self.lambda_layer_count + 1
source_node.real_name = IR_node.name