-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassification_OR_feat_ESM.py
459 lines (410 loc) · 25.4 KB
/
classification_OR_feat_ESM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
# -*- coding: utf-8 -*-
#
import numpy as np
import torch
import torch.nn as nn
from dgllife.model import load_pretrained
from dgllife.utils import EarlyStopping, Meter, SMILESToBigraph
from torch.optim import Adam
from torch.utils.data import DataLoader
from utils import collate_molgraphs, load_model, predict, predict_OR_feat
def run_a_train_epoch(args, epoch, model, OR_logits, data_loader, loss_criterion, optimizer, metric = None):
model.train()
train_meter = Meter()
for batch_id, batch_data in enumerate(data_loader):
idxs, smiles, bg, labels, masks, ids, node_masks = batch_data
if len(smiles) == 1:
# Avoid potential issues with batch normalization
continue
labels, masks = labels.to(args['device']), masks.to(args['device'])
logits = predict_OR_feat(args, model, bg, OR_logits[idxs, :])
#logits = predict(args, model, bg)
# Mask non-existing labels
loss = (loss_criterion(logits, labels) * (masks != 0).float()).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_meter.update(logits, labels, masks)
if batch_id % args['print_every'] == 0:
print('epoch {:d}/{:d}, batch {:d}/{:d}, loss {:.4f}'.format(
epoch + 1, args['num_epochs'], batch_id + 1, len(data_loader), loss.item()))
train_score = np.mean(train_meter.compute_metric(args['metric'] if metric is None else metric))
print('epoch {:d}/{:d}, training {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'], train_score))
def run_an_eval_epoch(args, model, OR_logits, data_loader, metric = None):
model.eval()
eval_meter = Meter()
with torch.no_grad():
for batch_id, batch_data in enumerate(data_loader):
idxs, smiles, bg, labels, masks, ids, node_masks = batch_data
labels = labels.to(args['device'])
logits = predict_OR_feat(args, model, bg, OR_logits[idxs, :])
eval_meter.update(logits, labels, masks)
return np.mean(eval_meter.compute_metric(args['metric'] if metric is None else metric))
def main(args, exp_config, dataset, train_set, val_set, test_set):
if args['featurizer_type'] != 'pre_train':
print(exp_config)
print(args['node_featurizer'].feat_size())
exp_config['in_node_feats'] = args['node_featurizer'].feat_size()
if args['edge_featurizer'] is not None:
exp_config['in_edge_feats'] = args['edge_featurizer'].feat_size()
exp_config.update({
'n_tasks': args['n_tasks'],
'model': args['model']
})
data_loader = DataLoader(dataset=dataset, batch_size=exp_config['batch_size'], shuffle = False,
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
train_loader = DataLoader(dataset=train_set, batch_size=exp_config['batch_size'], shuffle=True,
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
val_loader = DataLoader(dataset=val_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
test_loader = DataLoader(dataset=test_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
if args['OR_database'] == 'M2OR' or args['OR_database'] == 'HORDE':
exp_config['add_feat_size'] = args['num_OR_logits']
elif args['num_OR_logits'] > 845: # all DBs
exp_config['add_feat_size'] = 845 + 1237 # full OR databases
else:
exp_config['add_feat_size'] = args['num_OR_logits'] * 2 # slice of both OR databases
exp_config['mol2prot_dim'] = args['mol2prot_dim']
#exp_config['max_seq_len'] = args['max_seq_len']
exp_config['max_node_len'] = args['max_node_len']
## generate seq_mask, seq_embeddings
if args['num_OR_logits'] > 0 and args['OR_database'] == 'M2OR':
import pandas as pd
mol_OR = pd.read_csv('data/datasets/M2OR_original_mol_OR_pairs.csv', sep = ';')
top_seqs = mol_OR['mutated_Sequence'].value_counts()[0:args['num_OR_logits']].keys().tolist()
max_seq_len = len(max(top_seqs, key=len))
seq_masks = torch.zeros((len(top_seqs), max_seq_len))
print(seq_masks.shape)
for i in range(len(top_seqs)):
seq_masks[i, :len(top_seqs[i])] = 1
top_seqs[i] += "<pad>"*(max_seq_len - len(top_seqs[i]))
exp_config['max_seq_len'] = max_seq_len
from data.m2or import esm_embed
seq_embeddings = esm_embed(top_seqs, per_residue=True, random_weights=False, esm_model_version = '650m') ## output shape: (100, max_seq_len, embedding_dim)
print(len(seq_embeddings))#.shape)
seq_emb_arr = np.dstack(seq_embeddings)
seq_embeddings = torch.FloatTensor(np.rollaxis(seq_emb_arr, -1))#.cuda()
print(seq_embeddings.shape)
#seq_embeddings = seq_embeddings.to(args['device'])
elif args['num_OR_logits'] > 0 and args['OR_database'] == 'HORDE':
import pandas as pd
mol_OR = pd.read_csv('data/datasets/genes.csv', sep = '\t')
top_seqs = mol_OR['Conceptual Sequence'].value_counts()[0:args['num_OR_logits']].keys().tolist()
max_seq_len = len(max(top_seqs, key=len))
exp_config['max_seq_len'] = max_seq_len
elif args['num_OR_logits'] > 0 and args['OR_database'] == 'all':
import pandas as pd
mol_OR = pd.read_csv('data/datasets/genes.csv', sep = '\t')
top_seqs = mol_OR['Conceptual Sequence'].value_counts()[0:args['num_OR_logits']].keys().tolist()
mol_OR = pd.read_csv('data/datasets/M2OR_original_mol_OR_pairs.csv', sep = ';')
top_seqs_2 = mol_OR['mutated_Sequence'].value_counts()[0:args['num_OR_logits']].keys().tolist()
top_seqs = top_seqs + top_seqs_2
max_seq_len = len(max(top_seqs, key=len))
exp_config['max_seq_len'] = max_seq_len
else:
exp_config['max_seq_len'] = 0
if args['pretrain']:
args['num_epochs'] = 0
if args['featurizer_type'] == 'pre_train':
model = load_pretrained('{}_{}'.format(
args['model'], args['dataset'])).to(args['device'])
else:
model = load_pretrained('{}_{}_{}'.format(
args['model'], args['featurizer_type'], args['dataset'])).to(args['device'])
elif args['curriculum'] == True:
## Use pre-trained GNN encoder from M2OR to initialize GCN model
model = load_model(exp_config).to(args['device'])
loss_criterion = nn.BCEWithLogitsLoss(reduction='none')
optimizer = Adam(model.parameters(), lr=exp_config['lr'],
weight_decay=exp_config['weight_decay'])
stopper = EarlyStopping(patience=exp_config['patience'],
filename=args['result_path'] + '/model.pth',
metric=args['metric'])
exp_config['gnn_attended_feats'] = args['gnn_attended_feats']
## here we update n_tasks to be the number of tasks in the previous dataset (M2OR usually)
exp_config.update({'n_tasks': args['prev_data_n_tasks']})
## Change model to GCN type to load M2OR model temporarily (super hacky)
exp_config.update({'model': 'MolOR'})
exp_config.update({'add_feat_size' : args['prot_dim']}) #args['prot_dim'] NOTE: NEED LESS HACKY WAY
## Load OR predictive model to generate OR preds as features
exp_config['num_gnn_layers'] = 2 ## MolOR is 2 GNN layers
exp_config['predictor_hidden_feats'] = 128 ## MolOR is 256 hidden feats
exp_config['gnn_hidden_feats'] = 256 ## MolOR is 256 hidden feats
OR_model = load_model(exp_config).to(args['device'])
## Now we load the model weights for the previously trained model, in this case Uniprot-M2OR GCN
OR_checkpoint = torch.load(args['prev_model_path'] + '/model.pth', map_location=args['device'])
OR_model.load_state_dict(OR_checkpoint['model_state_dict'])
##NOTE: Trying something where in addition to using OR logits, we fine-tune the M2OR pre-trained GNN encoder.
# we want to copy the weights from `GNN` of our M2OR model to `gnn` of model
print(OR_model.gnn)
for original_layer, new_layer in zip(OR_model.gnn.gnn_layers, model.gnn.gnn_layers):
# Copying weights and biases for graph_conv
new_layer.graph_conv.weight.data = original_layer.graph_conv.weight.data.clone()
new_layer.graph_conv.bias.data = original_layer.graph_conv.bias.data.clone()
# Copying weights and biases for res_connection (Linear layer)
new_layer.res_connection.weight.data = original_layer.res_connection.weight.data.clone()
new_layer.res_connection.bias.data = original_layer.res_connection.bias.data.clone()
# If there are other parameters or buffers, they should also be copied similarly
# Optionally, verify that the weights are the same
print("Weights copied:")
else:
model = load_model(exp_config).to(args['device'])
loss_criterion = nn.BCEWithLogitsLoss(reduction='none')
optimizer = Adam(model.parameters(), lr=exp_config['lr'],
weight_decay=exp_config['weight_decay'])
stopper = EarlyStopping(patience=exp_config['patience'],
filename=args['result_path'] + '/model.pth',
metric=args['metric'])
exp_config['gnn_attended_feats'] = args['gnn_attended_feats']
## here we update n_tasks to be the number of tasks in the previous dataset (M2OR usually)
exp_config.update({'n_tasks': args['prev_data_n_tasks']})
## Change model to GCN type to load M2OR model temporarily (super hacky)
exp_config.update({'model': 'MolOR'})
exp_config.update({'add_feat_size' : args['prot_dim']}) #args['prot_dim'] NOTE: NEED LESS HACKY WAY
## Load OR predictive model to generate OR preds as features
exp_config['num_gnn_layers'] = 2 ## MolOR is 2 GNN layers
exp_config['predictor_hidden_feats'] = 128 ## MolOR is 256 hidden feats
exp_config['gnn_hidden_feats'] = 256 ## MolOR is 256 hidden feats
OR_model = load_model(exp_config).to(args['device'])
## Now we load the model weights for the previously trained model, in this case Uniprot-M2OR GCN
OR_checkpoint = torch.load(args['prev_model_path'] + '/model.pth', map_location=args['device'])
OR_model.load_state_dict(OR_checkpoint['model_state_dict'])
OR_model.eval()
## Get full GS_LF OR logits (5862, num_OR_logits)
full_OR_logits = None
## Check if file exists at 'data/datasets/train_OR_logits.pt'
## If so, load it and skip training
# TODO: this needs to be refactorde to be more clean, just sample from the best models (one weighed, one unweighed)
# OR logits and simplify the options
if args['OR_database'] == 'M2OR':
if args['prev_model_loss'] == 'unweighted_loss':
print("Loading logits from model trained on unweighed loss")
if os.path.isfile('data/datasets/full_{}_ORs_logits.pt'.format(args['num_OR_logits'])): # use MolOR 90/10
full_OR_logits = torch.load('data/datasets/full_{}_ORs_logits.pt'.format(args['num_OR_logits']))
elif args['num_OR_logits'] < 1237:
if os.path.isfile('data/datasets/full_1237_ORs_logits.pt'):
full_OR_logits = torch.load('data/datasets/full_1237_ORs_logits.pt')
# splice the first args['num_OR_logits'] OR logits from the 400 OR logits (columns)
else:
print("No logits file found")
if full_OR_logits is not None:
full_OR_logits = full_OR_logits[:, :args['num_OR_logits']]
else:
print("No logits file found")
# check if path in 'data/datasets/ contains file with 'weighted' in name
else: # use logits from model trained with weighed loss
print("Loading logits from model trained on weighed loss")
if os.path.isfile('data/datasets/full_weighted_{}_ORs_logits.pt'.format(args['num_OR_logits'])): # use MolOR 90/10
print("MolOR full weighted logits loading")
print("loading seed 7")
full_OR_logits = torch.load('data/datasets/full_weighted_{}_ORs_logits.pt'.format(args['num_OR_logits']))
elif args['num_OR_logits'] < 1237:
if os.path.isfile('data/datasets/full_weighted_1237_ORs_logits.pt'):
full_OR_logits = torch.load('data/datasets/full_weighted_1237_ORs_logits.pt')
# splice the first args['num_OR_logits'] OR logits from the 400 OR logits (columns)
else:
print("No logits file found")
if full_OR_logits is not None:
full_OR_logits = full_OR_logits[:, :args['num_OR_logits']]
else:
print("No logits file found")
elif args['OR_database'] == 'HORDE':
if args['prev_model_loss'] == 'unweighted_loss':
print("Loading logits from model trained on unweighed loss")
full_OR_logits = torch.load('/home/seyonec/olfaction/data/datasets/olfactory_subgenome_OR_logits.pt')
if args['num_OR_logits'] < 1237:
full_OR_logits = full_OR_logits[:, :args['num_OR_logits']]
else:
print("Loading logits from model trained on weighed loss")
full_OR_logits = torch.load('/home/seyonec/olfaction/data/datasets/weighted_loss_olfactory_subgenome_OR_logits.pt')
if args['num_OR_logits'] < 1237:
full_OR_logits = full_OR_logits[:, :args['num_OR_logits']]
else:
print("No valid OR database specified")
# generate OR logits if none on disk
if full_OR_logits is None:
if args['OR_database'] == 'HORDE':
print("Not supporting HORDE OR logits generation, terminating")
return
args['model'] = "MolOR"
print('Generating OR logits')
#$ Now that the model weights are loaded, lets revert n_tasks back to the current dataset's number of tasks (GS-LF)
full_OR_logits = torch.zeros(len(dataset), args['num_OR_logits']).cuda()
with torch.no_grad():
for batch_id, batch_data in enumerate(data_loader):
idxs, smiles, bg, labels, masks, ids, node_masks = batch_data
#print('seq embed shape')
#print(seq_embeddings.shape)
seq_masks = seq_masks.cuda()
node_masks = node_masks.cuda()
if len(smiles) == 1:
# Avoid potential issues with batch normalization
continue
if batch_id % 4 == 0:
print('batch_id: ' + str(batch_id))
labels, masks = labels.to(args['device']), masks.to(args['device'])
## Is it faster to iterate through each mol and generate logits for all 100 sequences by copying
## over graph features vs what we do now? Unlikely since torch.repeat is faster.
#OR_logits = torch.zeros((len(smiles), seq_embeddings.shape[0])).cuda()
for i in range(seq_embeddings.shape[0]):
## Get i-th sequence embedding
seq_embed = seq_embeddings[i]
#print('seq embed shape out of dataloader')
# print what device seq_embed is on
seq_mask = seq_masks[i]
# Copy len(smiles) times into tensor of shape (len(smiles), seq_embed.shape)
seq_embed = seq_embed.repeat(len(smiles), 1, 1)
seq_mask = seq_mask.repeat(len(smiles), 1)
full_OR_logits[idxs, i] = predict_OR_feat(args, OR_model, bg, seq_embed, seq_mask, node_masks).squeeze(dim=1)
#print(train_OR_logits)
print('done GS_LF OR logit predictions')
if args['prev_model_loss'] == 'weighted_loss':
print('Saving OR logits for model trained on weighted loss')
torch.save(full_OR_logits, 'data/datasets/full_weighted_{}_ORs_logits.pt'.format(args['num_OR_logits']))
else:
print('Saving OR logits for 90-10 model trained on unweighed loss')
torch.save(full_OR_logits, 'data/datasets/full_{}_ORs_logits.pt'.format(args['num_OR_logits']))
print(full_OR_logits.shape)
full_OR_logits = full_OR_logits.cuda()
## Get raw binarized labels for ORs
full_OR_logits = torch.round(torch.sigmoid(full_OR_logits))
#full_OR_logits = torch.sigmoid(full_OR_logits)
exp_config.update({'n_tasks': args['n_tasks']})
exp_config.update({'model': 'GCN_OR'})
args['model'] = 'GCN_OR'
for epoch in range(args['num_epochs']):
# Train
run_a_train_epoch(args, epoch, model, full_OR_logits, train_loader, loss_criterion, optimizer)
# Validation and early stop
#print('val OR logits shape')
#print(val_OR_logits.shape)
val_score = run_an_eval_epoch(args, model, full_OR_logits, val_loader)
val_prc_score = run_an_eval_epoch(args, model, full_OR_logits, val_loader, metric = 'pr_auc_score')
early_stop = stopper.step(val_score, model)
print('epoch {:d}/{:d}, validation {} {:.4f}, validation {} {:.4f}, best validation {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'],
val_score, 'prc_auc_score', val_prc_score,
args['metric'], stopper.best_score))
if early_stop:
break
if not args['pretrain']:
stopper.load_checkpoint(model)
val_score = run_an_eval_epoch(args, model, full_OR_logits, val_loader)
val_prc_score = run_an_eval_epoch(args, model, full_OR_logits, val_loader, metric = 'pr_auc_score')
test_score = run_an_eval_epoch(args, model, full_OR_logits, test_loader)
test_prc_score = run_an_eval_epoch(args, model, full_OR_logits, test_loader, metric = 'pr_auc_score')
print('val {} {:.4f}'.format(args['metric'], val_score))
print('test {} {:.4f}'.format(args['metric'], test_score))
print('val prc_auc_score {:.4f}'.format(val_prc_score))
print('test prc_auc_score {:.4f}'.format(test_prc_score))
with open(args['result_path'] + '/' + str(args['seed']) + '_eval.txt', 'w') as f:
if not args['pretrain']:
f.write('Best val {}: {}\n'.format(args['metric'], stopper.best_score))
f.write('Val {}: {}\n'.format(args['metric'], val_score))
f.write('Test {}: {}\n'.format(args['metric'], test_score))
f.write('Val prc_auc_score: {}\n'.format(val_prc_score))
f.write('Test prc_auc_score: {}\n'.format(test_prc_score))
if __name__ == '__main__':
import os
#os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
#CUDA_LAUNCH_BLOCKING = "1"
from argparse import ArgumentParser
from utils import init_featurizer, mkdir_p, split_dataset, get_configure
parser = ArgumentParser('Multi-label Binary Classification')
"""
parser.add_argument('-d', '--dataset', choices=['MUV', 'BACE', 'BBBP', 'ClinTox', 'SIDER',
'ToxCast', 'HIV', 'PCBA', 'Tox21'],
help='Dataset to use')
"""
parser.add_argument('-d', '--dataset', choices=['M2OR', 'GS_LF', 'GS_LF_OR'], default='M2OR',
help='Dataset to use (only M2OR and GS_LF are supported)')
parser.add_argument('-mo', '--model', choices=['GCN', 'GAT', 'GCN_OR', 'Weave', 'MPNN', 'AttentiveFP',
'gin_supervised_contextpred',
'gin_supervised_infomax',
'gin_supervised_edgepred',
'gin_supervised_masking',
'NF'],
help='Model to use')
parser.add_argument('-f', '--featurizer-type', choices=['canonical', 'attentivefp'],
help='Featurization for atoms (and bonds). This is required for models '
'other than gin_supervised_**.')
parser.add_argument('-pp', '--preprocess', choices = ['original', 'filtered', 'two_class', 'uniprot'],
help = 'What dataset to load for M2OR only, can be original, filtered, two_class or uniprot labels.')
parser.add_argument('-p', '--pretrain', action='store_true',
help='Whether to skip the training and evaluate the pre-trained model '
'on the test set (default: False)')
parser.add_argument('-c', '--curriculum', action='store_true')
parser.add_argument('-esm', '--esm_version', choices=['650m', '3B'])
parser.add_argument('-esm_rand', '--esm_random_weights', action='store_true', default = False)
parser.add_argument('-mol2prot', '--mol2prot_dim', action='store_true', default = False,
help= 'Before doing cross-attention, either map node_dim (usually 256) to prot_dim (usually 1280), \
or vice versa')
parser.add_argument('-n_ORs', '--num_OR_logits', type=int, default=10)
parser.add_argument('-prot', '--prot_dim', type=int, default=1280)
parser.add_argument('-prev', '--prev_data_n_tasks', type=int, default=574,
help= "For passing OR logits as features, specify n_tasks of previous dataset to correctly load saved model.")
parser.add_argument('-pmp', '--prev_model_path', type=str, default='M2OR_Uniprot_original_GCN',
help = 'For model to generate OR logits, specify path to trained model to correctly load model.')
parser.add_argument('-pl', '--prev_model_loss', choices=['weighted_loss', 'unweighted_loss'], default='unweighted_loss',)
## Seeded as random_state = 42
parser.add_argument('-s', '--split', choices=['scaffold', 'random'], default='scaffold',
help='Dataset splitting method (default: scaffold)')
parser.add_argument('-sr', '--split-ratio', default='0.8,0.1,0.1', type=str,
help='Proportion of the dataset to use for training, validation and test, '
'(default: 0.8,0.1,0.1)')
parser.add_argument('-me', '--metric', choices=['roc_auc_score', 'pr_auc_score'],
default='roc_auc_score',
help='Metric for evaluation (default: roc_auc_score)')
parser.add_argument('-n', '--num-epochs', type=int, default=1000,
help='Maximum number of epochs for training. '
'We set a large number by default as early stopping '
'will be performed. (default: 1000)')
parser.add_argument('-OR_db', '--OR_database', type=str, default='M2OR',
help='Database to use for ORs activations (default: M2OR, also support for HORDE or both)')
parser.add_argument('-nw', '--num-workers', type=int, default=0,
help='Number of processes for data loading (default: 0)')
parser.add_argument('-pe', '--print-every', type=int, default=20,
help='Print the training progress every X mini-batches')
parser.add_argument('-gnn_attend', '--gnn_attended_feats', type=int, default=None)
parser.add_argument('-rp', '--result-path', type=str, default='classification_results',
help='Path to save training results (default: classification_results)')
args = parser.parse_args().__dict__
if torch.cuda.is_available():
args['device'] = torch.device('cuda:0')
else:
args['device'] = torch.device('cpu')
seeds = [42, 63, 7, 17, 32]
for seed in seeds:
args['seed'] = seed
print('SEED NO: ' + str(seed))
torch.manual_seed(seed)
args = init_featurizer(args)
mkdir_p(args['result_path'])
smiles_to_g = SMILESToBigraph(add_self_loop=True, node_featurizer=args['node_featurizer'],
edge_featurizer=args['edge_featurizer'])
if args['dataset'] == 'M2OR':
from data.m2or import M2OR
dataset = M2OR(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'],
preprocess=args['preprocess'])
elif args['dataset'] == 'GS_LF':
from data.m2or import GS_LF
dataset = GS_LF(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'])
elif args['dataset'] == 'GS_LF_OR':
from data.m2or import GS_LF_OR
dataset = GS_LF_OR(smiles_to_graph=smiles_to_g,
n_jobs=1 if args['num_workers'] == 0 else args['num_workers'], load=True)
#args['max_seq_len'] = dataset.max_seq_len
## arbitrarily pad to size 100 - REMOVE THIS
#args['max_node_len'] = 100
## arbitrarily pad to size 100 to account for other datasets to do eval on
args['max_node_len'] = dataset.max_node_len
args['n_tasks'] = dataset.n_tasks
train_set, val_set, test_set = split_dataset(args, dataset)
exp_config = get_configure(args['model'], args['featurizer_type'], args['dataset'])
# to generate OR logits, use this function
#generate_OR_logits(args, exp_config, train_set, val_set, test_set, dataset)
main(args, exp_config, dataset, train_set, val_set, test_set)