title |
---|
Getting Started |
MindsDB can be integrated with the most popular databases, as well as with the DBT and MLflow workflows.
To try out MindsDB right away without bringing in your own data or models, follow our Quickstart guide.
Create your [free MindsDB Cloud account](https://cloud.mindsdb.com/signup). To get started with a Docker installation, follow the MindsDB installation instructions using [Docker](/setup/self-hosted/docker/). You can also install MindsDB using pip on [Windows](/setup/self-hosted/pip/windows/), [Mac](/setup/self-hosted/pip/macos/), and [Linux](/setup/self-hosted/pip/linux/) If you do not have a preferred SQL client yet, we recommend using the [MindsDB SQL Editor](https://cloud.mindsdb.com/editor) or [DBeaver Community Edition](https://dbeaver.io/download/). Follow [this guide](/setup/cloud/) to set up your MindsDB SQL Editor. And [here](/connect/dbeaver/), you'll find how to connect to MindsDB from DBeaver. By default, on MindsDB Cloud the SQL Editor is already connected. Skip to step 3 a. Create a new MySQL connection. 
b. Configure it using the parameters below, as well as your username and password.
```
Host: `cloud.mindsdb.com`
Port: `3306`
Database: `mindsdb`
```

</Tab>
<Tab title="Local to Dbeaver">
a. Create a new MySQL connection.

b. Configure it using the following parameters:
```
Host: `localhost`
Port: `47335`
Database: `mindsdb`
Username: `mindsdb`
Password: <leave it empty>
```

</Tab>
3. Connect your Data to MindsDB Using CREATE DATABASE
CREATE DATABASE example_data
WITH ENGINE = "postgres",
PARAMETERS = {
"user": "demo_user",
"password": "demo_password",
"host": "3.220.66.106",
"port": "5432",
"database": "demo"
};
4. Preview the Available Data Using SELECT
SELECT *
FROM example_data.demo_data.home_rentals
LIMIT 10;
5. Create a Model Using CREATE MODEL
If you already have a model in MLFlow, you can connect to your model.
```sql CREATE MODEL mindsdb.home_rentals_predictor FROM example_data (SELECT * FROM demo_data.home_rentals) PREDICT rental_price; ``` ```sql CREATE MODEL mindsdb.home_rentals_predictor FROM example_data (select * from demo_data.home_rentals) PREDICT rental_price USING url.predict='http://host.docker.internal:1234/invocations', format='mlflow', dtype_dict={"number_of_rooms": "categorical", "number_of_bathrooms": "categorical", "sqft": "integer", "days_on_market": "integer", "initial_price": "integer", "location": "categorical", "neighborhood":"categorical" }; ```6. Make Predictions Using SELECT
SELECT rental_price
FROM mindsdb.home_rentals_predictor
WHERE number_of_bathrooms = 2
AND sqft = 1000;
On execution, we get:
+--------------+
| rental_price |
+--------------+
| 1130 |
+--------------+
To do so, you need to make the following changes:
```yml profiles.yml mindsdb: type: mysql host: mysql.mindsdb.com user: [email protected] password: mindsdbpassword port: 3306 dbname: mindsdb schema: example_data threads: 1 keepalives_idle: 0 # default 0, indicating the system default connect_timeout: 10 # default 10 seconds ```version: 2
models:
- name: predicted_rentals
description: "Integrating MindsDB predictions and historical data"
with predictions as (
SELECT hrp.rental_price as predicted_price, hr.rental_price as actual_price
FROM mindsdb.home_rentals_predictor hrp
JOIN exampleData.demo_data.home_rentals hr
WHERE hr.number_of_bathrooms=2 AND hr.sqft=1000;
)
select * from predictions;
models:
home_rentals:
+materialized: view