-
-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathcrunchy.go
276 lines (241 loc) · 6.64 KB
/
crunchy.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
* crunchy - find common flaws in passwords
* Copyright (c) 2017-2018, Christian Muehlhaeuser <[email protected]>
*
* For license see LICENSE
*/
package crunchy
import (
"bufio"
"encoding/hex"
"hash"
"os"
"path/filepath"
"regexp"
"strings"
"sync"
"unicode"
"unicode/utf8"
"github.com/xrash/smetrics"
)
// Validator is used to setup a new password validator with options and dictionaries
type Validator struct {
options Options
once sync.Once
wordsMaxLen int // length of longest word in dictionaries
words map[string]struct{} // map to index parsed dictionaries
hashedWords map[string]string // maps hash-sum to password
}
// Options contains all the settings for a Validator
type Options struct {
// MinLength is the minimum length required for a valid password (>=1, default is 8)
MinLength int
// MinDiff is the minimum amount of unique characters required for a valid password (>=1, default is 5)
MinDiff int
// MinDist is the minimum WagnerFischer distance for mangled password dictionary lookups (>=0, default is 3)
MinDist int
// Hashers will be used to find hashed passwords in dictionaries
Hashers []hash.Hash
// DictionaryPath contains all the dictionaries that will be parsed (default is /usr/share/dict)
DictionaryPath string
// Check haveibeenpwned.com database
CheckHIBP bool
// MustContainDigit requires at least one digit for a valid password
MustContainDigit bool
// MustContainSymbol requires at least one special symbol for a valid password
MustContainSymbol bool
}
// NewValidator returns a new password validator with default settings
func NewValidator() *Validator {
return NewValidatorWithOpts(Options{
MinDist: -1,
DictionaryPath: "/usr/share/dict",
CheckHIBP: false,
MustContainDigit: false,
MustContainSymbol: false,
})
}
// NewValidatorWithOpts returns a new password validator with custom settings
func NewValidatorWithOpts(options Options) *Validator {
if options.MinLength <= 0 {
options.MinLength = 8
}
if options.MinDiff <= 0 {
options.MinDiff = 5
}
if options.MinDist < 0 {
options.MinDist = 3
}
return &Validator{
options: options,
words: make(map[string]struct{}),
hashedWords: make(map[string]string),
}
}
// indexDictionaries parses dictionaries/wordlists
func (v *Validator) indexDictionaries() {
if v.options.DictionaryPath == "" {
return
}
dicts, err := filepath.Glob(filepath.Join(v.options.DictionaryPath, "*"))
if err != nil {
return
}
for _, dict := range dicts {
file, err := os.Open(dict)
if err != nil {
continue
}
scanner := bufio.NewScanner(file)
for scanner.Scan() {
nw := normalize(scanner.Text())
nwlen := len(nw)
if nwlen > v.wordsMaxLen {
v.wordsMaxLen = nwlen
}
// if a word is smaller than the minimum length minus the minimum distance
// then any collisons would have been rejected by pre-dictionary checks
if nwlen >= v.options.MinLength-v.options.MinDist {
v.words[nw] = struct{}{}
}
for _, hasher := range v.options.Hashers {
v.hashedWords[hashsum(nw, hasher)] = nw
}
}
file.Close()
}
}
// foundInDictionaries returns whether a (mangled) string exists in the indexed dictionaries
func (v *Validator) foundInDictionaries(s string) error {
v.once.Do(v.indexDictionaries)
pw := normalize(s) // normalized password
revpw := reverse(pw) // reversed password
pwlen := len(pw)
// let's check perfect matches first
// we can skip this if the pw is longer than the longest word in our dictionary
if pwlen <= v.wordsMaxLen {
if _, ok := v.words[pw]; ok {
return &DictionaryError{ErrDictionary, pw, 0}
}
if _, ok := v.words[revpw]; ok {
return &DictionaryError{ErrMangledDictionary, revpw, 0}
}
}
// find hashed dictionary entries
if pwindex, err := hex.DecodeString(pw); err == nil {
if word, ok := v.hashedWords[string(pwindex)]; ok {
return &HashedDictionaryError{ErrHashedDictionary, word}
}
}
// find mangled / reversed passwords
// we can skip this if the pw is longer than the longest word plus our minimum distance
if pwlen <= v.wordsMaxLen+v.options.MinDist {
for word := range v.words {
if dist := smetrics.WagnerFischer(word, pw, 1, 1, 1); dist <= v.options.MinDist {
return &DictionaryError{ErrMangledDictionary, word, dist}
}
if dist := smetrics.WagnerFischer(word, revpw, 1, 1, 1); dist <= v.options.MinDist {
return &DictionaryError{ErrMangledDictionary, word, dist}
}
}
}
return nil
}
// Check validates a password for common flaws
// It returns nil if the password is considered acceptable.
func (v *Validator) Check(password string) error {
if strings.TrimSpace(password) == "" {
return ErrEmpty
}
if len(password) < v.options.MinLength {
return ErrTooShort
}
if countUniqueChars(password) < v.options.MinDiff {
return ErrTooFewChars
}
if v.options.MustContainDigit {
validateDigit := regexp.MustCompile(`[0-9]+`)
if !validateDigit.MatchString(password) {
return ErrNoDigits
}
}
if v.options.MustContainSymbol {
validateSymbols := regexp.MustCompile(`[^\w\s]+`)
if !validateSymbols.MatchString(password) {
return ErrNoSymbols
}
}
// Inspired by cracklib
maxrepeat := 3.0 + (0.09 * float64(len(password)))
if countSystematicChars(password) > int(maxrepeat) {
return ErrTooSystematic
}
err := v.foundInDictionaries(password)
if err != nil {
return err
}
if v.options.CheckHIBP {
err := foundInHIBP(password)
if err != nil {
return err
}
}
return nil
}
// Rate grades a password's strength from 0 (weak) to 100 (strong).
func (v *Validator) Rate(password string) (uint, error) {
if err := v.Check(password); err != nil {
return 0, err
}
l := len(password)
systematics := countSystematicChars(password)
repeats := l - countUniqueChars(password)
var letters, uLetters, numbers, symbols int
for len(password) > 0 {
r, size := utf8.DecodeRuneInString(password)
password = password[size:]
if unicode.IsLetter(r) {
if unicode.IsUpper(r) {
uLetters++
} else {
letters++
}
} else if unicode.IsNumber(r) {
numbers++
} else {
symbols++
}
}
// ADD: number of characters
n := l * 4
// ADD: uppercase letters
if uLetters > 0 {
n += (l - uLetters) * 2
}
// ADD: lowercase letters
if letters > 0 {
n += (l - letters) * 2
}
// ADD: numbers
n += numbers * 4
// ADD: symbols
n += symbols * 6
// REM: letters only
if l == letters+uLetters {
n -= letters + uLetters
}
// REM: numbers only
if l == numbers {
n -= numbers * 4
}
// REM: repeat characters (case insensitive)
n -= repeats * 4
// REM: systematic characters
n -= systematics * 3
if n < 0 {
n = 0
} else if n > 100 {
n = 100
}
return uint(n), nil
}