-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMinterm.thy
639 lines (543 loc) · 28.9 KB
/
Minterm.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
(* Title: Separation-Logic-Formalization/Minterm.thy
Author: Nicolas Amat, Mnacho Echenim, Nicolas Peltier
*)
section \<open>Minterms\<close>
text \<open>This section contains the minterms definition and some propositions related to them.\<close>
theory Minterm
imports
Test_Formulae
begin
subsection \<open>Minterms Definition\<close>
typedef ('var, 'k::finite) minterm
= "{S. ((\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (sl_not (ext_card_heap_ge n)))
\<and> finite S)}"
proof
define l1::"('var, 'k::finite) sl_formula" where "l1 = ext_card_heap_ge 0"
have "l1\<in> test_formulae" unfolding l1_def using test_formulae.simps by auto
define x::"('var, 'k::finite) literal set"
where "x = {to_literal l1, to_literal (sl_not l1)}"
show "x \<in> {S. ((\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (sl_not (ext_card_heap_ge n)))
\<and> finite S)}"
proof (intro CollectI conjI ex1I)
show "to_literal l1 \<in> x" by (simp add: l1_def x_def)
show "\<exists>n. to_sl_formula (to_literal l1) = ext_card_heap_ge n"
proof
show "to_sl_formula (to_literal l1) = ext_card_heap_ge 0" using \<open>l1\<in> test_formulae\<close>
unfolding l1_def by simp
qed
show "\<And>l. l \<in> x \<and> (\<exists>n. to_sl_formula l = ext_card_heap_ge n) \<Longrightarrow> l = to_literal l1"
proof -
fix l
assume lprop: "l \<in> x \<and> (\<exists>n. to_sl_formula l = ext_card_heap_ge n)"
hence "\<exists>n. to_sl_formula l = ext_card_heap_ge n" by simp
from this obtain n where ndef: "to_sl_formula l = ext_card_heap_ge n" by auto
have "l = to_literal l1 \<or> l = to_literal (sl_not l1)" using lprop unfolding x_def by simp
moreover have "l\<noteq> to_literal (sl_not l1)"
proof (rule ccontr)
assume "\<not> l \<noteq> to_literal (sl_not l1)"
hence "l = to_literal (sl_not l1)" by simp
hence "to_sl_formula l = (sl_not l1)" by (simp add: \<open>l1 \<in> test_formulae\<close>)
hence "((ext_card_heap_ge n)::('var, 'k::finite) sl_formula) = sl_not l1" using ndef by simp
also have "... = ((sl_not (ext_card_heap_ge 0))::('var, 'k::finite) sl_formula)" using l1_def by simp
finally have "((ext_card_heap_ge n)::('var, 'k::finite) sl_formula) = sl_not (ext_card_heap_ge 0)" .
thus False
proof (cases "n = \<infinity>")
case True
hence "ext_card_heap_ge n = sl_false" by simp
thus ?thesis using sl_formula.distinct
proof -
show ?thesis
using True \<open>ext_card_heap_ge n = sl_not l1\<close> by auto
qed
next
case False
show ?thesis
proof (cases "n = 0")
case True
hence "ext_card_heap_ge n = sl_true"
by (simp add: enat_defs(1))
thus ?thesis
proof -
show ?thesis
by (metis \<open>ext_card_heap_ge n = sl_not l1\<close> \<open>ext_card_heap_ge n = sl_true\<close> sl_formula.distinct(3))
qed
next
case False
hence "\<exists>m. n = Suc m" using \<open>n\<noteq> \<infinity>\<close> using list_decode.cases zero_enat_def by auto
from this obtain m where "n = Suc m" by auto
hence "ext_card_heap_ge (n::enat) = sl_conj (ext_card_heap_ge (m)) (sl_not sl_emp)"
by simp
thus ?thesis
proof -
show ?thesis
by (metis \<open>ext_card_heap_ge n = sl_conj (ext_card_heap_ge (enat m)) (sl_not sl_emp)\<close>
\<open>ext_card_heap_ge n = sl_not (ext_card_heap_ge 0)\<close> sl_formula.distinct(45))
qed
qed
qed
qed
ultimately show "l = to_literal l1" by simp
qed
show "to_literal (sl_not l1) \<in> x" by (simp add: l1_def x_def)
show "\<exists>n. to_sl_formula (to_literal (sl_not l1)) = sl_not (ext_card_heap_ge n)"
proof
show "to_sl_formula (to_literal (sl_not l1)) = sl_not (ext_card_heap_ge 0)" using \<open>l1\<in> test_formulae\<close>
unfolding l1_def by simp
qed
show "\<And>l. l \<in> x \<and> (\<exists>n. to_sl_formula l = sl_not (ext_card_heap_ge n)) \<Longrightarrow> l = to_literal (sl_not l1)"
proof -
fix l
assume lprop: "l \<in> x \<and> (\<exists>n. to_sl_formula l = sl_not (ext_card_heap_ge n))"
hence "\<exists>n. to_sl_formula l = sl_not (ext_card_heap_ge n)" by simp
from this obtain n where ndef: "to_sl_formula l = sl_not (ext_card_heap_ge n)" by auto
have "l = to_literal l1 \<or> l = to_literal (sl_not l1)" using lprop unfolding x_def by simp
moreover have "l\<noteq> to_literal (l1)"
proof (rule ccontr)
assume "\<not> l \<noteq> to_literal (l1)"
hence "l = to_literal (l1)" by simp
hence "to_sl_formula l = (l1)" by (simp add: \<open>l1 \<in> test_formulae\<close>)
hence "((sl_not (ext_card_heap_ge n))::('var, 'k::finite) sl_formula) = l1" using ndef by simp
also have "... = (((ext_card_heap_ge 0))::('var, 'k::finite) sl_formula)" using l1_def by simp
also have "... = (sl_true::('var, 'k::finite) sl_formula)" by (simp add: enat_defs)
finally have "((sl_not (ext_card_heap_ge n))::('var, 'k::finite) sl_formula) = (sl_true)" .
thus False
proof (cases "n = \<infinity>")
case True
hence "ext_card_heap_ge n = sl_false" by simp
hence "sl_not (ext_card_heap_ge n) = sl_not sl_false" by simp
thus ?thesis using sl_formula.distinct \<open>sl_not (ext_card_heap_ge n) = sl_true\<close> by simp
next
case False
show ?thesis
proof (cases "n = 0")
case True
hence "ext_card_heap_ge n = sl_true"
by (simp add: enat_defs(1))
hence "sl_not (ext_card_heap_ge n) = sl_not sl_true" by simp
thus ?thesis using sl_formula.distinct \<open>sl_not (ext_card_heap_ge n) = sl_true\<close> by simp
next
case False
hence "\<exists>m. n = Suc m" using \<open>n\<noteq> \<infinity>\<close> using list_decode.cases zero_enat_def by auto
from this obtain m where "n = Suc m" by auto
hence "ext_card_heap_ge (n::enat) = sl_conj (ext_card_heap_ge (m)) (sl_not sl_emp)"
by simp
hence "sl_not (ext_card_heap_ge n) = sl_not (sl_conj (ext_card_heap_ge (m)) (sl_not sl_emp))" by simp
thus ?thesis using sl_formula.distinct \<open>sl_not (ext_card_heap_ge n) = sl_true\<close> by simp
qed
qed
qed
ultimately show "l = to_literal (sl_not l1)" by simp
qed
next
show "finite x"
by (simp add: x_def)
qed
qed
subsection \<open>Minterm Casts\<close>
definition to_literal_set :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "to_literal_set M = Rep_minterm M"
definition to_minterm :: "('var, 'k::finite) literal set \<Rightarrow> ('var, 'k) minterm"
where "to_minterm S = Abs_minterm S"
definition to_sl_formula_set :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) sl_formula set"
where "to_sl_formula_set M = {(to_sl_formula l)|l. l \<in> (to_literal_set M)}"
subsection \<open>Minterm Complement\<close>
definition minterm_complement :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) minterm"
where "minterm_complement M = (to_minterm {(literal_complement l) | l. l\<in>(to_literal_set M)})"
subsection \<open>Minterm Var Set\<close>
definition minterm_var_set :: "('var, 'k::finite) minterm \<Rightarrow> 'var set"
where "minterm_var_set M = {x. \<exists>l\<in>(to_literal_set M). x\<in>(literal_var_set l)}"
subsection \<open>Minterm Evaluation\<close>
definition minterm_evl :: "('var, 'addr, 'k::finite) interp \<Rightarrow> ('var, 'k) minterm \<Rightarrow> bool"
where "minterm_evl I M = literal_set_evl I (to_literal_set M)"
subsection \<open>Sets Definitions\<close>
subsubsection \<open>Intersections Sets\<close>
definition e_literals :: "('var, 'k::finite) literal set"
where "e_literals = {to_literal (sl_eq x y)|x y. True}
\<union> {to_literal (sl_not (sl_eq x y))|x y. True}"
definition a_literals :: "('var, 'k::finite) literal set"
where "a_literals = {to_literal (alloc x)|x. True}
\<union> {to_literal (sl_not (alloc x))|x. True}"
definition p_literals :: "('var, 'k::finite) literal set"
where "p_literals = {to_literal (points_to x y)|x y. True}
\<union> {to_literal (sl_not (points_to x y))|x y. True}"
definition h_literals :: "('var, 'k::finite) literal set"
where "h_literals = {to_literal (ext_card_heap_ge n) |n. True}
\<union> {to_literal (sl_not (ext_card_heap_ge n)) |n. True}"
subsubsection \<open>Minterms Sets Composed by an Intersection\<close>
definition e_minterm :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "e_minterm M = to_literal_set M \<inter> e_literals"
definition a_minterm :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "a_minterm M = to_literal_set M \<inter> a_literals"
definition p_minterm :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "p_minterm M = to_literal_set M \<inter> p_literals"
definition h_minterm :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "h_minterm M = to_literal_set M \<inter> h_literals"
subsection \<open>Completeness Definitions\<close>
subsubsection \<open>E-complete\<close>
definition E_complete :: "'var set \<Rightarrow> ('var, 'k::finite) minterm \<Rightarrow> bool"
where "E_complete S M
= (\<forall>x\<in>S. \<forall>y\<in>S.
(to_literal (sl_eq x y)) \<in> (to_literal_set M)
\<or> (to_literal (sl_not (sl_eq x y))) \<in> (to_literal_set M))"
subsubsection \<open>A-complete\<close>
definition A_complete :: "'var set \<Rightarrow> ('var, 'k::finite) minterm \<Rightarrow> bool"
where "A_complete S M
= (\<forall>x\<in>S.
(to_literal (alloc x)) \<in> (to_literal_set M)
\<or> (to_literal (sl_not (alloc x))) \<in> (to_literal_set M))"
subsubsection \<open>Satisfiability Condition\<close>
definition minterm_sat :: "('var, 'k::finite) minterm \<Rightarrow> bool"
where "minterm_sat M = (\<forall>l\<in>(to_literal_set M). (literal_complement l) \<notin> (to_literal_set M))"
subsection \<open>Closures Definitions\<close>
subsubsection \<open>Complement Closure\<close>
definition cc :: "('var, 'k::finite) minterm \<Rightarrow> ('var, 'k) literal set"
where "cc M = (to_literal_set M) \<union> {literal_complement l | l. l\<in>(to_literal_set M)}"
subsubsection \<open>Points-to Closure\<close>
definition pc :: "('var, 'k::finite) minterm \<Rightarrow> bool"
where "pc M = (\<forall>x1. \<forall>y1. \<forall>x2. \<forall>y2.
(((to_literal (points_to x1 y1)) \<in> (to_literal_set M))
\<and> ((to_literal (points_to x2 y2)) \<in> (to_literal_set M))
\<and> ((to_literal (sl_eq x1 x2)) \<in> (to_literal_set M))
\<longrightarrow> (\<forall>i::'k. (to_literal (sl_eq (y1 $ i) (y2 $ i))) \<in> (to_literal_set M))))"
subsubsection \<open>Domain Closure\<close>
definition dc :: "('var, 'k::finite) minterm \<Rightarrow> bool"
where "dc M = (\<forall>n1 n2.
((to_literal (ext_card_heap_ge n1)) \<in> (to_literal_set M)
\<and> (to_literal (sl_not (ext_card_heap_ge n2))) \<in> (to_literal_set M))
\<longrightarrow> (n1 < n2))"
subsection \<open>Footprint-Consistency\<close>
definition footprint_consistent :: "('var, 'k::finite) minterm \<Rightarrow> bool"
where "footprint_consistent M = (\<forall>x1 x2 y1 y2.
(to_literal (sl_eq x1 x2) \<in> (to_literal_set M))
\<and> (\<forall>i::'k. to_literal (sl_eq (y1 $ i) (y2 $ i)) \<in> (to_literal_set M))
\<and> (to_literal (alloc x1) \<in> (to_literal_set M) \<longrightarrow> to_literal (sl_not (alloc x2)) \<notin> (to_literal_set M))
\<and> (to_literal (points_to x1 y1) \<in> (to_literal_set M) \<longrightarrow> (to_literal (sl_not (alloc x2)) \<notin> (to_literal_set M)
\<and> to_literal (sl_not (points_to x2 y2)) \<notin> (to_literal_set M))))"
subsection \<open>Useful Results\<close>
subsubsection \<open>Minterms Definition\<close>
lemma minterm_have_ext_card_heap_ge:
fixes M::"('var, 'k::finite) minterm"
shows "\<exists>!l\<in>(to_literal_set M). \<exists>n. ((to_sl_formula l) = (ext_card_heap_ge n))"
proof -
have "to_literal_set M \<in> {S. ((\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (sl_not (ext_card_heap_ge n)))
\<and> finite S)}"
by (metis (no_types) Rep_minterm to_literal_set_def)
hence "(\<exists>!l\<in>(to_literal_set M). \<exists>n. (to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>(to_literal_set M). \<exists>n. (to_sl_formula l) = (sl_not (ext_card_heap_ge n)))"
by simp
thus ?thesis
by simp
qed
lemma minterm_have_not_ext_card_heap_ge:
fixes M::"('var, 'k::finite) minterm"
shows "\<exists>!l\<in>(to_literal_set M). \<exists>n. ((to_sl_formula l) = (sl_not (ext_card_heap_ge n)))"
proof -
have "to_literal_set M \<in> {S. ((\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>S::('var, 'k::finite) literal set. \<exists>n.
(to_sl_formula l) = (sl_not (ext_card_heap_ge n)))
\<and> finite S)}"
by (metis (no_types) Rep_minterm to_literal_set_def)
hence "(\<exists>!l\<in>(to_literal_set M). \<exists>n. (to_sl_formula l) = (ext_card_heap_ge n))
\<and> (\<exists>!l\<in>(to_literal_set M). \<exists>n. (to_sl_formula l) = (sl_not (ext_card_heap_ge n)))"
by simp
thus ?thesis
by (simp add: to_literal_set_def)
qed
subsubsection \<open>Minterm Casts\<close>
lemma to_literal_set_composed_by_test_formula:
"\<forall>l \<in> (to_literal_set M).
(to_sl_formula (l::(('var, 'k::finite) literal)) \<in> test_formulae)
\<or> (\<exists>l_prim. (l = to_literal (sl_not l_prim)) \<and> (l_prim \<in> test_formulae))"
by (metis literal_atom_cases_tmp pos_literal_inv to_atom_is_test_formula)
subsubsection \<open>Minterm Var Set\<close>
lemma points_to_var_set:
assumes "to_literal (points_to x y) \<in> to_literal_set M"
shows "\<forall>i. (y $ i) \<in> (minterm_var_set M)"
proof
fix i
have "to_literal (sl_conj (sl_mapsto x y) sl_true) \<in> to_literal_set M"
by (metis assms points_to_def)
hence "literal_var_set (to_literal (sl_conj (sl_mapsto x y) sl_true)) \<subseteq> (minterm_var_set M)"
using minterm_var_set_def by fastforce
hence "var_set (sl_mapsto x y) \<subseteq> (minterm_var_set M)"
by (metis Un_subset_iff literal_var_set_def points_to_def pos_literal_inv test_formulae.intros(1) var_set.simps(9))
hence "({x} \<union> {y $ i | i. True}) \<subseteq> (minterm_var_set M)"
by auto
thus "(y $ i) \<in> (minterm_var_set M)"
by blast
qed
subsubsection \<open>Sets Definitions\<close>
lemma to_atom_charact:
assumes "to_atom l \<in> test_formulae"
shows "l \<in> a_literals \<union> e_literals \<union> p_literals \<union> h_literals"
proof -
have atm: "to_atom l \<in> {(sl_eq x y)|x y. True} \<union> {(alloc x)|x. True} \<union> {(points_to x y)|x y. True}
\<union> {ext_card_heap_ge n|n. True}" using test_formulae_charact assms by auto
show ?thesis
proof (cases "l = to_literal (to_atom l)")
case True
thus ?thesis using atm unfolding a_literals_def e_literals_def p_literals_def h_literals_def by force
next
case False
hence "l = to_literal (sl_not (to_atom l))" using literal_atom_cases_tmp[of l] by simp
thus ?thesis using atm unfolding a_literals_def e_literals_def p_literals_def h_literals_def by force
qed
qed
lemma to_atom_minterms_sets:
fixes M::"('var , 'k::finite) literal set"
assumes "\<And>l::(('var, 'k) literal). ((l \<in> M) \<Longrightarrow> (to_sl_formula l) \<in> test_formulae) \<Longrightarrow> to_literal (sl_not (to_sl_formula l)) \<in> M"
and "to_literal (to_atom l) \<in> M"
shows "l \<in> M"
by (metis assms(1) assms(2) literal_atom_cases_tmp pos_literal_inv to_atom_is_test_formula)
lemma from_to_atom_in_e_minterm:
fixes M::"('var , 'k::finite) minterm"
assumes "\<And>l::(('var, 'k) literal). (l \<in> (e_minterm M)) \<Longrightarrow> (to_sl_formula l) \<in> test_formulae \<Longrightarrow> to_literal (sl_not (to_sl_formula l)) \<in> (e_minterm M)"
and "to_literal (to_atom l) \<in> (e_minterm M)"
shows "l \<in> (e_minterm M)"
by (metis assms(1) assms(2) literal_atom_cases_tmp pos_literal_inv to_atom_is_test_formula)
lemma from_to_atom_in_a_minterm:
fixes M::"('var , 'k::finite) minterm"
assumes "\<And>l::(('var, 'k) literal). (l \<in> (a_minterm M)) \<Longrightarrow> (to_sl_formula l) \<in> test_formulae \<Longrightarrow> to_literal (sl_not (to_sl_formula l)) \<in> (a_minterm M)"
and "to_literal (to_atom l) \<in> (a_minterm M)"
shows "l \<in> (a_minterm M)"
by (metis assms(1) assms(2) literal_atom_cases_tmp pos_literal_inv to_atom_is_test_formula)
lemma from_to_atom_in_p_minterm:
fixes M::"('var , 'k::finite) minterm"
assumes "\<And>l::(('var, 'k) literal). (l \<in> (p_minterm M)) \<Longrightarrow> (to_sl_formula l) \<in> test_formulae \<Longrightarrow> to_literal (sl_not (to_sl_formula l)) \<in> (p_minterm M)"
and "to_literal (to_atom l) \<in> (p_minterm M)"
shows "l \<in> (p_minterm M)"
by (metis assms(1) assms(2) literal_atom_cases_tmp pos_literal_inv to_atom_is_test_formula)
subsubsection \<open>Equality in Minterm\<close>
lemma eq_var_set:
assumes "to_literal (sl_eq x y) \<in> to_literal_set M"
shows "(x \<in> (minterm_var_set M)) \<and> (y \<in> (minterm_var_set M))"
proof -
have "x \<in> var_set (sl_eq x y) \<and> y \<in> var_set (sl_eq x y)"
by simp
hence "x \<in> literal_var_set (to_literal (sl_eq x y)) \<and> y \<in> literal_var_set (to_literal (sl_eq x y))"
by (simp add: literal_var_set_def test_formulae.intros(4))
thus "x \<in> (minterm_var_set M) \<and> y \<in> (minterm_var_set M)"
using assms minterm_var_set_def by fastforce
qed
lemma three_eq_sat:
fixes M::"('var, 'k::finite) minterm"
and I::"('var, 'addr, 'k) interp"
and x1::'var
and x2::'var
and x3::'var
assumes "to_literal (sl_eq x1 x2) \<in> (to_literal_set M)"
and "to_literal (sl_eq x2 x3) \<in> (to_literal_set M)"
and "minterm_evl I M"
and "E_complete (minterm_var_set M) M"
shows "to_literal (sl_eq x1 x3) \<in> (to_literal_set M)"
proof -
have "x1 \<in> (minterm_var_set M)"
by (meson assms(1) eq_var_set)
moreover have "x2 \<in> (minterm_var_set M)"
by (meson assms(1) eq_var_set)
moreover have "E_complete (minterm_var_set M) M"
by (simp add: assms(4))
ultimately have "to_literal (sl_eq x1 x3) \<in> (to_literal_set M) \<or> to_literal (sl_not (sl_eq x1 x3)) \<in> (to_literal_set M)"
by (meson E_complete_def assms(2) eq_var_set)
moreover have "evaluation I (sl_eq x1 x3)"
by (metis assms(1) assms(2) assms(3) evaluation.simps(6) literal_evl_def literal_set_evl_def
minterm_evl_def pos_literal_inv test_formulae.intros(4))
moreover have "minterm_evl I M"
by (simp add: assms(3))
ultimately show "to_literal (sl_eq x1 x3) \<in> (to_literal_set M)"
by (metis evaluation.simps(3) literal_evl_def literal_set_evl_def minterm_evl_def
neg_literal_inv test_formulae.intros(4))
qed
lemma eq_av:
fixes M::"('var, 'k::finite) minterm"
and I::"('var, 'addr, 'k) interp"
and x1::'var
and x2::'var
assumes "to_literal (sl_eq x1 x2) \<in> (to_literal_set M)"
and "x2 \<in> av (to_literal_set M)"
and "minterm_evl I M"
and "E_complete (minterm_var_set M) M"
shows "x1 \<in> av (to_literal_set M)"
proof -
have "x2 \<in> av (to_literal_set M)"
by (simp add: assms(2))
from this obtain x3
where "to_literal (sl_eq x2 x3) \<in> (to_literal_set M)"
and alloc_points_to_x3: "((to_literal_set M) \<inter> ({to_literal (alloc x3)}
\<union> {to_literal (points_to x3 y) | y. True})) \<noteq> {}"
unfolding av_def
by blast
hence eq_x3: "to_literal (sl_eq x1 x3) \<in> (to_literal_set M)"
by (meson assms(1) assms(3) assms(4) three_eq_sat)
thus "x1 \<in> av (to_literal_set M)" using av_def alloc_points_to_x3
by force
qed
subsection \<open>Minterms Sets Equality\<close>
lemma minterms_sets_equality:
fixes M::"('var, 'k::finite) minterm"
shows "to_literal_set M = e_minterm M \<union> a_minterm M \<union> p_minterm M \<union> h_minterm M"
proof
define min_set::"('var, 'k::finite) literal set"
where "min_set = e_minterm M \<union> a_minterm M \<union> p_minterm M \<union> h_minterm M"
show "to_literal_set M \<subseteq> min_set"
proof
fix l
assume asm:"l \<in> (to_literal_set M)"
hence "to_atom l\<in> test_formulae" by (simp add: to_atom_is_test_formula)
hence "l \<in> e_literals \<union> a_literals \<union> p_literals \<union> h_literals" using to_atom_charact by auto
thus "l\<in> min_set" unfolding min_set_def using asm
by (simp add: a_minterm_def e_minterm_def h_minterm_def p_minterm_def)
qed
next
show "e_minterm M \<union> a_minterm M \<union> p_minterm M \<union> h_minterm M \<subseteq> to_literal_set M"
by (simp add: a_minterm_def e_minterm_def h_minterm_def p_minterm_def)
qed
subsection \<open>Proposition 5\<close>
lemma minterm_prop_5:
fixes I_1::"('var, 'addr, 'k::finite) interp"
and I_2::"('var, 'addr, 'k::finite) interp"
and M::"('var, 'k) minterm"
assumes "store I_1 = store I_2"
shows "literal_set_evl I_1 (e_minterm M)
\<Longrightarrow> literal_set_evl I_2 (e_minterm M)"
proof -
assume asm: "literal_set_evl I_1 (e_minterm M)"
show "literal_set_evl I_2 (e_minterm M)" unfolding literal_set_evl_def
proof (intro ballI)
fix l
assume asm_l: "l \<in> (e_minterm M)"
hence l_evl: "literal_evl I_1 l"
using asm literal_set_evl_def by blast
hence "l \<in> e_literals"
using asm_l e_minterm_def by auto
hence "\<exists>x y. l = to_literal (sl_eq x y) \<or> l = to_literal (sl_not (sl_eq x y))"
using asm_l e_literals_def by force
thus "literal_evl I_2 l"
by (metis assms evaluation.simps(3) evaluation.simps(6) l_evl literal_evl_def neg_literal_inv
pos_literal_inv test_formulae.intros(4))
qed
qed
subsection \<open>Proposition 7\<close>
lemma minterm_prop_7_pc:
fixes I::"('var, 'addr, 'k::finite) interp"
and M::"('var, 'k) minterm"
assumes "minterm_evl I M"
and "E_complete (minterm_var_set M) M"
shows "pc M" unfolding pc_def
proof (intro allI impI)
fix x1 y1 x2 y2 i
assume asm: "to_literal (points_to x1 y1) \<in> to_literal_set M
\<and> to_literal (points_to x2 y2) \<in> to_literal_set M
\<and> to_literal (sl_eq x1 x2) \<in> to_literal_set M"
have "literal_evl I (to_literal (points_to x1 y1))"
using asm assms(1) literal_set_evl_def minterm_evl_def by blast
hence points_to_1: "(store_and_heap I x1) = Some (store_vector (store I) y1)"
by (simp add: literal_evl_def test_formulae.intros(1) tf_prop_1_1)
have "literal_evl I (to_literal (points_to x2 y2))"
using asm assms(1) literal_set_evl_def minterm_evl_def by blast
hence points_to_2: "(store_and_heap I x2) = Some (store_vector (store I) y2)"
by (simp add: literal_evl_def test_formulae.intros(1) tf_prop_1_1)
have equality_x: "store I x1 = store I x2"
by (metis asm assms(1) evaluation.simps(6) literal_evl_def literal_set_evl_def
minterm_evl_def pos_literal_inv test_formulae.intros(4))
from points_to_1 and points_to_2 and equality_x have "(store_vector (store I) y1) = (store_vector (store I) y2)"
by (simp add: store_and_heap_def)
hence "(store I) (y1 $ i) = (store I) (y2 $ i)"
using equality_store_vector by blast
hence "\<not>(literal_evl I (to_literal (sl_not (sl_eq (y1 $ i) (y2 $ i)))))"
by (simp add: literal_evl_def test_formulae.intros(4))
moreover have "(y1 $ i) \<in> (minterm_var_set M)" using asm
by (meson points_to_var_set)
ultimately show "to_literal (sl_eq (y1 $ i) (y2 $ i)) \<in> to_literal_set M"
by (meson E_complete_def asm assms(1) assms(2) literal_set_evl_def minterm_evl_def points_to_var_set)
qed
lemma minterm_prop_7_dc:
fixes I::"('var, 'addr, 'k::finite) interp"
and M::"('var, 'k) minterm"
assumes "minterm_evl I M"
and "E_complete (minterm_var_set M) M"
shows "dc M"
proof -
obtain l1 and n1 where l1_in_M :"l1 \<in> (to_literal_set M)"
and l1_def: "l1 = to_literal (ext_card_heap_ge n1)"
by (metis Rep_literal_inverse minterm_have_ext_card_heap_ge to_literal_def to_sl_formula_def)
obtain l2 and n2 where l2_in_M: "l2 \<in> (to_literal_set M)"
and l2_def: "l2 = to_literal (sl_not (ext_card_heap_ge n2))"
by (metis literal_atom_cases_tmp minterm_have_not_ext_card_heap_ge neg_literal_inv pos_literal_inv to_atom_is_test_formula)
have "literal_evl I l1"
using assms(1) l1_in_M literal_set_evl_def minterm_evl_def by blast
moreover have "literal_evl I l2"
using assms(1) l2_in_M literal_set_evl_def minterm_evl_def by blast
ultimately have "n1 < n2"
by (simp add: card_heap_bounded l1_def l2_def literal_evl_def test_formulae.intros(3))
thus "dc M"
by (metis assms(1) card_heap_bounded dc_def literal_evl_def literal_set_evl_def minterm_evl_def
neg_literal_inv pos_literal_inv test_formulae.intros(3))
qed
lemma minterm_prop7:
fixes I::"('var, 'addr, 'k::finite) interp"
and M::"('var, 'k) minterm"
assumes "minterm_evl I M"
and "E_complete (minterm_var_set M) M"
shows "pc M \<and> dc M"
using assms(1) assms(2) minterm_prop_7_dc minterm_prop_7_pc by blast
subsection \<open>Proposition 9\<close>
lemma minterm_prop_9_not_E_complete:
fixes M::"('var, 'k::finite) minterm"
assumes "footprint_consistent M"
shows "nv (to_literal_set M) \<inter> av (to_literal_set M) = {}"
proof (rule ccontr)
assume asm: "nv (to_literal_set M) \<inter> av (to_literal_set M) \<noteq> {}"
from asm obtain x x1 where nv_1: "x \<in> (nv (to_literal_set M)) \<inter> av (to_literal_set M)"
and nv_2: "to_literal (sl_eq x x1) \<in> (to_literal_set M)"
and nv_3: "to_literal (sl_not (alloc x1)) \<in> (to_literal_set M)"
unfolding nv_def
by blast
from asm and nv_1 and nv_2 and nv_3 obtain x2 where av_1: "to_literal (sl_eq x x2) \<in> (to_literal_set M)"
and av_2:"(to_literal_set M)\<inter>({to_literal (alloc x2)} \<union> {to_literal (points_to x2 y) | y. True}) \<noteq> {}"
unfolding av_def
by auto
hence "\<not>(footprint_consistent M)"
using footprint_consistent_def nv_3 by fastforce
thus False
using assms by simp
qed
lemma minterm_prop_9_E_complete:
fixes M::"('var, 'k::finite) minterm"
assumes "footprint_consistent M"
and "E_complete (minterm_var_set M) M"
and "X \<inter> (av (to_literal_set M)) = {}"
and "minterm_evl I M"
shows "(store_set (store I) X) \<inter> (store_set (store I) (av (to_literal_set M))) = {}"
proof (rule ccontr)
assume "(store_set (store I) X) \<inter> (store_set (store I) (av (to_literal_set M))) \<noteq> {}"
from this obtain l where "l \<in> (store_set (store I) X)"
and "l \<in> (store_set (store I) (av (to_literal_set M)))"
by blast
from this obtain x1 x2 where x1_in: "x1 \<in> X"
and x2_in: "x2 \<in> (av (to_literal_set M))"
and x1_def: "store I x1 = l"
and x2_def: "store I x2 = l"
by (metis antecedent_store_set)
have e_com:"E_complete (minterm_var_set M) M"
by (simp add: assms(2))
hence cases: "to_literal (sl_eq x1 x2) \<in> (to_literal_set M) \<or> to_literal (sl_not (sl_eq x1 x2)) \<in> (to_literal_set M)"
using assms(1) footprint_consistent_def by force
from x2_in and e_com have case_1: "to_literal (sl_eq x1 x2) \<in> (to_literal_set M) \<longrightarrow> x1 \<in> (av (to_literal_set M))"
by (meson assms(4) eq_av)
have case_2: "to_literal (sl_not (sl_eq x1 x2)) \<in> (to_literal_set M) \<longrightarrow> \<not>(minterm_evl I M)"
using assms(1) assms(3) case_1 disjoint_iff_not_equal footprint_consistent_def x1_in by fastforce
from cases and case_1 and case_2 show False
using assms(3) assms(4) x1_in by blast
qed
end