Skip to content

Commit c5985de

Browse files
committed
fix: address side effects of correctly handling dtype
1 parent 3138de0 commit c5985de

File tree

4 files changed

+82
-24
lines changed

4 files changed

+82
-24
lines changed

nitransforms/tests/test_base.py

+9-2
Original file line numberDiff line numberDiff line change
@@ -88,19 +88,26 @@ def _to_hdf5(klass, x5_root):
8888
monkeypatch.setattr(TransformBase, "_to_hdf5", _to_hdf5)
8989
fname = testdata_path / "someones_anatomy.nii.gz"
9090

91+
img = nb.load(fname)
92+
imgdata = np.asanyarray(img.dataobj, dtype=img.get_data_dtype())
93+
9194
# Test identity transform
9295
xfm = TransformBase()
9396
xfm.reference = fname
9497
assert xfm.ndim == 3
9598
moved = xfm.apply(fname, order=0)
96-
assert np.all(nb.load(str(fname)).get_fdata() == moved.get_fdata())
99+
assert np.all(
100+
imgdata == np.asanyarray(moved.dataobj, dtype=moved.get_data_dtype())
101+
)
97102

98103
# Test identity transform - setting reference
99104
xfm = TransformBase()
100105
xfm.reference = fname
101106
assert xfm.ndim == 3
102107
moved = xfm.apply(str(fname), reference=fname, order=0)
103-
assert np.all(nb.load(str(fname)).get_fdata() == moved.get_fdata())
108+
assert np.all(
109+
imgdata == np.asanyarray(moved.dataobj, dtype=moved.get_data_dtype())
110+
)
104111

105112
# Test applying to Gifti
106113
gii = nb.gifti.GiftiImage(

nitransforms/tests/test_linear.py

+10-7
Original file line numberDiff line numberDiff line change
@@ -216,6 +216,7 @@ def test_apply_linear_transform(tmpdir, get_testdata, get_testmask, image_orient
216216
diff = np.asanyarray(sw_moved_mask.dataobj) - np.asanyarray(nt_moved_mask.dataobj)
217217

218218
assert np.sqrt((diff ** 2).mean()) < RMSE_TOL
219+
brainmask = np.asanyarray(nt_moved_mask.dataobj, dtype=bool)
219220

220221
cmd = APPLY_LINEAR_CMD[sw_tool](
221222
transform=os.path.abspath(xfm_fname),
@@ -224,23 +225,25 @@ def test_apply_linear_transform(tmpdir, get_testdata, get_testmask, image_orient
224225
resampled=os.path.abspath("resampled.nii.gz"),
225226
)
226227

227-
brainmask = np.asanyarray(nt_moved_mask.dataobj, dtype=bool)
228-
229228
exit_code = check_call([cmd], shell=True)
230229
assert exit_code == 0
231230
sw_moved = nb.load("resampled.nii.gz")
232231
sw_moved.set_data_dtype(img.get_data_dtype())
233232

234233
nt_moved = xfm.apply(img, order=0)
235-
diff = (sw_moved.get_fdata() - nt_moved.get_fdata())
236-
diff[~brainmask] = 0.0
237-
diff[np.abs(diff) < 1e-3] = 0
234+
diff = (
235+
np.asanyarray(sw_moved.dataobj, dtype=sw_moved.get_data_dtype())
236+
- np.asanyarray(nt_moved.dataobj, dtype=nt_moved.get_data_dtype())
237+
)
238238

239239
# A certain tolerance is necessary because of resampling at borders
240-
assert np.sqrt((diff ** 2).mean()) < RMSE_TOL
240+
assert np.sqrt((diff[brainmask] ** 2).mean()) < RMSE_TOL
241241

242242
nt_moved = xfm.apply("img.nii.gz", order=0)
243-
diff = sw_moved.get_fdata() - nt_moved.get_fdata()
243+
diff = (
244+
np.asanyarray(sw_moved.dataobj, dtype=sw_moved.get_data_dtype())
245+
- np.asanyarray(nt_moved.dataobj, dtype=nt_moved.get_data_dtype())
246+
)
244247
# A certain tolerance is necessary because of resampling at borders
245248
assert np.sqrt((diff[brainmask] ** 2).mean()) < RMSE_TOL
246249

nitransforms/tests/test_manip.py

+7-3
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
from ..manip import load as _load, TransformChain
1212
from ..linear import Affine
1313
from .test_nonlinear import (
14-
TESTS_BORDER_TOLERANCE,
14+
RMSE_TOL,
1515
APPLY_NONLINEAR_CMD,
1616
)
1717

@@ -38,7 +38,11 @@ def test_itk_h5(tmp_path, testdata_path):
3838

3939
# Then apply the transform and cross-check with software
4040
cmd = APPLY_NONLINEAR_CMD["itk"](
41-
transform=xfm_fname, reference=ref_fname, moving=img_fname
41+
transform=xfm_fname,
42+
reference=ref_fname,
43+
moving=img_fname,
44+
output="resampled.nii.gz",
45+
extra="",
4246
)
4347

4448
# skip test if command is not available on host
@@ -54,7 +58,7 @@ def test_itk_h5(tmp_path, testdata_path):
5458
nt_moved.to_filename("nt_resampled.nii.gz")
5559
diff = sw_moved.get_fdata() - nt_moved.get_fdata()
5660
# A certain tolerance is necessary because of resampling at borders
57-
assert (np.abs(diff) > 1e-3).sum() / diff.size < TESTS_BORDER_TOLERANCE
61+
assert (np.abs(diff) > 1e-3).sum() / diff.size < RMSE_TOL
5862

5963

6064
@pytest.mark.parametrize("ext0", ["lta", "tfm"])

nitransforms/tests/test_nonlinear.py

+56-12
Original file line numberDiff line numberDiff line change
@@ -13,18 +13,18 @@
1313
from ..io.itk import ITKDisplacementsField
1414

1515

16-
TESTS_BORDER_TOLERANCE = 0.05
16+
RMSE_TOL = 0.05
1717
APPLY_NONLINEAR_CMD = {
1818
"itk": """\
1919
antsApplyTransforms -d 3 -r {reference} -i {moving} \
20-
-o resampled.nii.gz -n NearestNeighbor -t {transform} --float\
20+
-o {output} -n NearestNeighbor -t {transform} {extra}\
2121
""".format,
2222
"afni": """\
2323
3dNwarpApply -nwarp {transform} -source {moving} \
24-
-master {reference} -interp NN -prefix resampled.nii.gz
24+
-master {reference} -interp NN -prefix {output} {extra}\
2525
""".format,
2626
'fsl': """\
27-
applywarp -i {moving} -r {reference} -o resampled.nii.gz \
27+
applywarp -i {moving} -r {reference} -o {output} {extra}\
2828
-w {transform} --interp=nn""".format,
2929
}
3030

@@ -56,13 +56,23 @@ def test_itk_disp_load_intent():
5656
@pytest.mark.parametrize("image_orientation", ["RAS", "LAS", "LPS", "oblique"])
5757
@pytest.mark.parametrize("sw_tool", ["itk", "afni"])
5858
@pytest.mark.parametrize("axis", [0, 1, 2, (0, 1), (1, 2), (0, 1, 2)])
59-
def test_displacements_field1(tmp_path, get_testdata, image_orientation, sw_tool, axis):
59+
def test_displacements_field1(
60+
tmp_path,
61+
get_testdata,
62+
get_testmask,
63+
image_orientation,
64+
sw_tool,
65+
axis,
66+
):
6067
"""Check a translation-only field on one or more axes, different image orientations."""
6168
if (image_orientation, sw_tool) == ("oblique", "afni") and axis in ((1, 2), (0, 1, 2)):
6269
pytest.skip("AFNI Deoblique unsupported.")
6370
os.chdir(str(tmp_path))
6471
nii = get_testdata[image_orientation]
72+
msk = get_testmask[image_orientation]
6573
nii.to_filename("reference.nii.gz")
74+
msk.to_filename("mask.nii.gz")
75+
6676
fieldmap = np.zeros(
6777
(*nii.shape[:3], 1, 3) if sw_tool != "fsl" else (*nii.shape[:3], 3),
6878
dtype="float32",
@@ -83,24 +93,50 @@ def test_displacements_field1(tmp_path, get_testdata, image_orientation, sw_tool
8393
# Then apply the transform and cross-check with software
8494
cmd = APPLY_NONLINEAR_CMD[sw_tool](
8595
transform=os.path.abspath(xfm_fname),
86-
reference=tmp_path / "reference.nii.gz",
87-
moving=tmp_path / "reference.nii.gz",
96+
reference=tmp_path / "mask.nii.gz",
97+
moving=tmp_path / "mask.nii.gz",
98+
output=tmp_path / "resampled_brainmask.nii.gz",
99+
extra="--output-data-type uchar" if sw_tool == "itk" else "",
88100
)
89101

90102
# skip test if command is not available on host
91103
exe = cmd.split(" ", 1)[0]
92104
if not shutil.which(exe):
93105
pytest.skip("Command {} not found on host".format(exe))
94106

107+
# resample mask
108+
exit_code = check_call([cmd], shell=True)
109+
assert exit_code == 0
110+
sw_moved_mask = nb.load("resampled_brainmask.nii.gz")
111+
nt_moved_mask = xfm.apply(msk, order=0)
112+
nt_moved_mask.set_data_dtype(msk.get_data_dtype())
113+
diff = np.asanyarray(sw_moved_mask.dataobj) - np.asanyarray(nt_moved_mask.dataobj)
114+
115+
assert np.sqrt((diff ** 2).mean()) < RMSE_TOL
116+
brainmask = np.asanyarray(nt_moved_mask.dataobj, dtype=bool)
117+
118+
# Then apply the transform and cross-check with software
119+
cmd = APPLY_NONLINEAR_CMD[sw_tool](
120+
transform=os.path.abspath(xfm_fname),
121+
reference=tmp_path / "reference.nii.gz",
122+
moving=tmp_path / "reference.nii.gz",
123+
output=tmp_path / "resampled.nii.gz",
124+
extra="--output-data-type uchar" if sw_tool == "itk" else ""
125+
)
126+
95127
exit_code = check_call([cmd], shell=True)
96128
assert exit_code == 0
97129
sw_moved = nb.load("resampled.nii.gz")
98130

99131
nt_moved = xfm.apply(nii, order=0)
100132
nt_moved.to_filename("nt_resampled.nii.gz")
101-
diff = sw_moved.get_fdata() - nt_moved.get_fdata()
133+
sw_moved.set_data_dtype(nt_moved.get_data_dtype())
134+
diff = (
135+
np.asanyarray(sw_moved.dataobj, dtype=sw_moved.get_data_dtype())
136+
- np.asanyarray(nt_moved.dataobj, dtype=nt_moved.get_data_dtype())
137+
)
102138
# A certain tolerance is necessary because of resampling at borders
103-
assert (np.abs(diff) > 1e-3).sum() / diff.size < TESTS_BORDER_TOLERANCE
139+
assert np.sqrt((diff[brainmask] ** 2).mean()) < RMSE_TOL
104140

105141

106142
@pytest.mark.parametrize("sw_tool", ["itk", "afni"])
@@ -116,7 +152,11 @@ def test_displacements_field2(tmp_path, testdata_path, sw_tool):
116152

117153
# Then apply the transform and cross-check with software
118154
cmd = APPLY_NONLINEAR_CMD[sw_tool](
119-
transform=xfm_fname, reference=img_fname, moving=img_fname
155+
transform=xfm_fname,
156+
reference=img_fname,
157+
moving=img_fname,
158+
output="resampled.nii.gz",
159+
extra="",
120160
)
121161

122162
# skip test if command is not available on host
@@ -130,6 +170,10 @@ def test_displacements_field2(tmp_path, testdata_path, sw_tool):
130170

131171
nt_moved = xfm.apply(img_fname, order=0)
132172
nt_moved.to_filename("nt_resampled.nii.gz")
133-
diff = sw_moved.get_fdata() - nt_moved.get_fdata()
173+
sw_moved.set_data_dtype(nt_moved.get_data_dtype())
174+
diff = (
175+
np.asanyarray(sw_moved.dataobj, dtype=sw_moved.get_data_dtype())
176+
- np.asanyarray(nt_moved.dataobj, dtype=nt_moved.get_data_dtype())
177+
)
134178
# A certain tolerance is necessary because of resampling at borders
135-
assert (np.abs(diff) > 1e-3).sum() / diff.size < TESTS_BORDER_TOLERANCE
179+
assert np.sqrt((diff ** 2).mean()) < RMSE_TOL

0 commit comments

Comments
 (0)