-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
219 lines (188 loc) · 9.12 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import os
import numpy as np
from collections import defaultdict
from tqdm import tqdm
import imageio
from argparse import ArgumentParser
from models.rendering import render_rays
from models.nerf import *
from utils import load_ckpt
import metrics
from datasets import dataset_dict
from datasets.depth_utils import *
torch.backends.cudnn.benchmark = True
def get_opts():
parser = ArgumentParser()
parser.add_argument('--root_dir', type=str,
default='/home/ubuntu/data/nerf_example_data/nerf_synthetic/lego',
help='root directory of dataset')
parser.add_argument('--dataset_name', type=str, default='blender',
choices=['blender', 'phototourism'],
help='which dataset to validate')
parser.add_argument('--scene_name', type=str, default='test',
help='scene name, used as output folder name')
parser.add_argument('--split', type=str, default='val',
choices=['val', 'test', 'test_train'])
parser.add_argument('--img_wh', nargs="+", type=int, default=[800, 800],
help='resolution (img_w, img_h) of the image')
# for phototourism
parser.add_argument('--img_downscale', type=int, default=1,
help='how much to downscale the images for phototourism dataset')
parser.add_argument('--use_cache', default=False, action="store_true",
help='whether to use ray cache (make sure img_downscale is the same)')
# original NeRF parameters
parser.add_argument('--N_emb_xyz', type=int, default=10,
help='number of xyz embedding frequencies')
parser.add_argument('--N_emb_dir', type=int, default=4,
help='number of direction embedding frequencies')
parser.add_argument('--N_samples', type=int, default=64,
help='number of coarse samples')
parser.add_argument('--N_importance', type=int, default=128,
help='number of additional fine samples')
parser.add_argument('--use_disp', default=False, action="store_true",
help='use disparity depth sampling')
# NeRF-W parameters
parser.add_argument('--N_vocab', type=int, default=100,
help='''number of vocabulary (number of images)
in the dataset for nn.Embedding''')
parser.add_argument('--encode_a', default=False, action="store_true",
help='whether to encode appearance (NeRF-A)')
parser.add_argument('--N_a', type=int, default=48,
help='number of embeddings for appearance')
parser.add_argument('--encode_t', default=False, action="store_true",
help='whether to encode transient object (NeRF-U)')
parser.add_argument('--N_tau', type=int, default=16,
help='number of embeddings for transient objects')
parser.add_argument('--beta_min', type=float, default=0.1,
help='minimum color variance for each ray')
parser.add_argument('--chunk', type=int, default=32*1024*4,
help='chunk size to split the input to avoid OOM')
parser.add_argument('--ckpt_path', type=str, required=True,
help='pretrained checkpoint path to load')
parser.add_argument('--video_format', type=str, default='gif',
choices=['gif', 'mp4'],
help='video format, gif or mp4')
return parser.parse_args()
@torch.no_grad()
def batched_inference(models, embeddings,
rays, ts, N_samples, N_importance, use_disp,
chunk,
white_back,
**kwargs):
"""Do batched inference on rays using chunk."""
B = rays.shape[0]
results = defaultdict(list)
for i in range(0, B, chunk):
rendered_ray_chunks = \
render_rays(models,
embeddings,
rays[i:i+chunk],
ts[i:i+chunk] if ts is not None else None,
N_samples,
use_disp,
0,
0,
N_importance,
chunk,
white_back,
test_time=True,
**kwargs)
for k, v in rendered_ray_chunks.items():
results[k] += [v.cpu()]
for k, v in results.items():
results[k] = torch.cat(v, 0)
return results
if __name__ == "__main__":
args = get_opts()
kwargs = {'root_dir': args.root_dir,
'split': args.split}
if args.dataset_name == 'blender':
kwargs['img_wh'] = tuple(args.img_wh)
else:
kwargs['img_downscale'] = args.img_downscale
kwargs['use_cache'] = args.use_cache
dataset = dataset_dict[args.dataset_name](**kwargs)
scene = os.path.basename(args.root_dir.strip('/'))
embedding_xyz = PosEmbedding(args.N_emb_xyz-1, args.N_emb_xyz)
embedding_dir = PosEmbedding(args.N_emb_dir-1, args.N_emb_dir)
embeddings = {'xyz': embedding_xyz, 'dir': embedding_dir}
if args.encode_a:
embedding_a = torch.nn.Embedding(args.N_vocab, args.N_a).cuda()
load_ckpt(embedding_a, args.ckpt_path, model_name='embedding_a')
embeddings['a'] = embedding_a
if args.encode_t:
embedding_t = torch.nn.Embedding(args.N_vocab, args.N_tau).cuda()
load_ckpt(embedding_t, args.ckpt_path, model_name='embedding_t')
embeddings['t'] = embedding_t
nerf_coarse = NeRF('coarse',
in_channels_xyz=6*args.N_emb_xyz+3,
in_channels_dir=6*args.N_emb_dir+3).cuda()
models = {'coarse': nerf_coarse}
nerf_fine = NeRF('fine',
in_channels_xyz=6*args.N_emb_xyz+3,
in_channels_dir=6*args.N_emb_dir+3,
encode_appearance=args.encode_a,
in_channels_a=args.N_a,
encode_transient=args.encode_t,
in_channels_t=args.N_tau,
beta_min=args.beta_min).cuda()
load_ckpt(nerf_coarse, args.ckpt_path, model_name='nerf_coarse')
load_ckpt(nerf_fine, args.ckpt_path, model_name='nerf_fine')
models = {'coarse': nerf_coarse, 'fine': nerf_fine}
imgs, psnrs = [], []
dir_name = f'results/{args.dataset_name}/{args.scene_name}'
os.makedirs(dir_name, exist_ok=True)
kwargs = {}
# define testing poses and appearance index for phototourism
if args.dataset_name == 'phototourism' and args.split == 'test':
# define testing camera intrinsics (hard-coded, feel free to change)
dataset.test_img_w, dataset.test_img_h = args.img_wh
dataset.test_focal = dataset.test_img_w/2/np.tan(np.pi/6) # fov=60 degrees
dataset.test_K = np.array([[dataset.test_focal, 0, dataset.test_img_w/2],
[0, dataset.test_focal, dataset.test_img_h/2],
[0, 0, 1]])
if scene == 'brandenburg_gate':
# select appearance embedding, hard-coded for each scene
dataset.test_appearance_idx = 1123 # 85572957_6053497857.jpg
N_frames = 30*4
dx = np.linspace(0, 0.03, N_frames)
dy = np.linspace(0, -0.1, N_frames)
dz = np.linspace(0, 0.5, N_frames)
# define poses
dataset.poses_test = np.tile(dataset.poses_dict[1123], (N_frames, 1, 1))
for i in range(N_frames):
dataset.poses_test[i, 0, 3] += dx[i]
dataset.poses_test[i, 1, 3] += dy[i]
dataset.poses_test[i, 2, 3] += dz[i]
else:
raise NotImplementedError
kwargs['output_transient'] = False
for i in tqdm(range(len(dataset))):
sample = dataset[i]
rays = sample['rays']
ts = sample['ts']
results = batched_inference(models, embeddings, rays.cuda(), ts.cuda(),
args.N_samples, args.N_importance, args.use_disp,
args.chunk,
dataset.white_back,
**kwargs)
if args.dataset_name == 'blender':
w, h = args.img_wh
else:
w, h = sample['img_wh']
img_pred = np.clip(results['rgb_fine'].view(h, w, 3).cpu().numpy(), 0, 1)
img_pred_ = (img_pred*255).astype(np.uint8)
imgs += [img_pred_]
imageio.imwrite(os.path.join(dir_name, f'{i:03d}.png'), img_pred_)
if 'rgbs' in sample:
rgbs = sample['rgbs']
img_gt = rgbs.view(h, w, 3)
psnrs += [metrics.psnr(img_gt, img_pred).item()]
if args.dataset_name == 'blender' or \
(args.dataset_name == 'phototourism' and args.split == 'test'):
imageio.mimsave(os.path.join(dir_name, f'{args.scene_name}.{args.video_format}'),
imgs, fps=30)
if psnrs:
mean_psnr = np.mean(psnrs)
print(f'Mean PSNR : {mean_psnr:.2f}')