This repository was archived by the owner on May 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathVectorBundle.cs
421 lines (403 loc) · 19.8 KB
/
VectorBundle.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
using RCNet.CsvTools;
using RCNet.Extensions;
using RCNet.MathTools;
using System;
using System.Collections.Generic;
using System.Globalization;
namespace RCNet.Neural.Data
{
/// <summary>
/// Implements a bundle of input and output data vector pairs.
/// </summary>
[Serializable]
public class VectorBundle
{
//Constants
/// <summary>
/// The maximum ratio of one data fold.
/// </summary>
public const double MaxRatioOfFoldData = 0.5d;
//Attributes
/// <summary>
/// The collection of input vectors.
/// </summary>
public List<double[]> InputVectorCollection { get; }
/// <summary>
/// The collection of output vectors.
/// </summary>
public List<double[]> OutputVectorCollection { get; }
//Constructors
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
public VectorBundle()
{
InputVectorCollection = new List<double[]>();
OutputVectorCollection = new List<double[]>();
return;
}
/// <summary>
/// Creates an uninitialized instance.
/// </summary>
/// <param name="expectedNumOfPairs">The expected number of vector pairs.</param>
public VectorBundle(int expectedNumOfPairs)
{
InputVectorCollection = new List<double[]>(expectedNumOfPairs);
OutputVectorCollection = new List<double[]>(expectedNumOfPairs);
return;
}
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="inputVectorCollection">The collection of input vectors.</param>
/// <param name="outputVectorCollection">The collection of output vectors.</param>
public VectorBundle(IEnumerable<double[]> inputVectorCollection, IEnumerable<double[]> outputVectorCollection)
{
InputVectorCollection = new List<double[]>(inputVectorCollection);
OutputVectorCollection = new List<double[]>(outputVectorCollection);
return;
}
//Static methods
/// <summary>
/// Loads the vector bundle from the csv data (continuous input feeding).
/// </summary>
/// <param name="csvData">The csv data.</param>
/// <param name="inputFieldNameCollection">The names of input fields.</param>
/// <param name="outputFieldNameCollection">The names of output fields.</param>
/// <param name="remainingInputVector">The last unused input vector.</param>
public static VectorBundle Load(CsvDataHolder csvData,
List<string> inputFieldNameCollection,
List<string> outputFieldNameCollection,
out double[] remainingInputVector
)
{
remainingInputVector = null;
List<int> inputFieldIndexes = new List<int>();
List<int> outputFieldIndexes = new List<int>();
if (inputFieldNameCollection != null)
{
//Check the number of fields
if (csvData.ColNameCollection.NumOfStringValues < inputFieldNameCollection.Count)
{
throw new ArgumentException("The number of column names in csv data is less than the number of the input fields.", "csvData");
}
//Collect indexes of allowed input fields
foreach (string name in inputFieldNameCollection)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(name);
if (fieldIdx == -1)
{
throw new ArgumentException($"The input field name {name} was not found in the csv data column names.", "csvData");
}
inputFieldIndexes.Add(fieldIdx);
}
}
else
{
int[] indexes = new int[csvData.ColNameCollection.NumOfStringValues];
indexes.Indices();
inputFieldIndexes = new List<int>(indexes);
}
for (int i = 0; i < outputFieldNameCollection.Count; i++)
{
int fieldIdx = csvData.ColNameCollection.IndexOf(outputFieldNameCollection[i]);
if (fieldIdx == -1)
{
throw new ArgumentException($"The output field name {outputFieldNameCollection[i]} was not found in the csv data column names.", "csvData");
}
outputFieldIndexes.Add(fieldIdx);
}
//Prepare input and output vectors
List<double[]> inputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
List<double[]> outputVectorCollection = new List<double[]>(csvData.DataRowCollection.Count);
for (int i = 0; i < csvData.DataRowCollection.Count; i++)
{
//Input vector
double[] inputVector = new double[inputFieldIndexes.Count];
for (int j = 0; j < inputFieldIndexes.Count; j++)
{
inputVector[j] = csvData.DataRowCollection[i].GetValueAt(inputFieldIndexes[j]).ParseDouble(true, $"Can't parse double value {csvData.DataRowCollection[i].GetValueAt(inputFieldIndexes[j])}.");
}
if (i < csvData.DataRowCollection.Count - 1)
{
//Within the bundle
inputVectorCollection.Add(inputVector);
}
else
{
//Remaining input vector out of the bundle
remainingInputVector = inputVector;
}
if (i > 0)
{
//Output vector
double[] outputVector = new double[outputFieldIndexes.Count];
for (int j = 0; j < outputFieldIndexes.Count; j++)
{
outputVector[j] = csvData.DataRowCollection[i].GetValueAt(outputFieldIndexes[j]).ParseDouble(true, $"Can't parse double value {csvData.DataRowCollection[i].GetValueAt(outputFieldIndexes[j])}.");
}
outputVectorCollection.Add(outputVector);
}
}
//Create and return bundle
return new VectorBundle(inputVectorCollection, outputVectorCollection);
}
/// <summary>
/// Loads the vector bundle from the csv data (patterned input feeding).
/// </summary>
/// <param name="csvData">The csv data.</param>
/// <param name="numOfOutputFields">The number of output fields.</param>
public static VectorBundle Load(CsvDataHolder csvData, int numOfOutputFields)
{
VectorBundle bundle = new VectorBundle();
foreach (DelimitedStringValues dataRow in csvData.DataRowCollection)
{
int numOfInputValues = dataRow.NumOfStringValues - numOfOutputFields;
//Check data length
if (numOfInputValues <= 0)
{
throw new ArgumentException("Incorrect length of data row.", "csvData");
}
//Input data
double[] inputData = new double[numOfInputValues];
for (int i = 0; i < numOfInputValues; i++)
{
inputData[i] = dataRow.GetValueAt(i).ParseDouble(true, $"Can't parse double data value {dataRow.GetValueAt(i)}.");
}
//Output data
double[] outputData = new double[numOfOutputFields];
for (int i = 0; i < numOfOutputFields; i++)
{
outputData[i] = dataRow.GetValueAt(numOfInputValues + i).ParseDouble(true, $"Can't parse double data value {dataRow.GetValueAt(numOfInputValues + i)}.");
}
bundle.AddPair(inputData, outputData);
}
return bundle;
}
//Methods
/// <summary>
/// Adds the vector pair into the bundle.
/// </summary>
/// <param name="inputVector">The input vector.</param>
/// <param name="outputVector">The output vector.</param>
public void AddPair(double[] inputVector, double[] outputVector)
{
InputVectorCollection.Add(inputVector);
OutputVectorCollection.Add(outputVector);
return;
}
/// <summary>
/// Adds all the vector pairs from another vector bundle.
/// </summary>
/// <param name="data">Another vector bundle.</param>
public void Add(VectorBundle data)
{
InputVectorCollection.AddRange(data.InputVectorCollection);
OutputVectorCollection.AddRange(data.OutputVectorCollection);
return;
}
/// <summary>
/// Shuffles the vector pairs.
/// </summary>
/// <param name="rand">The random object to be used.</param>
public void Shuffle(Random rand)
{
List<double[]> l1 = new List<double[]>(InputVectorCollection);
List<double[]> l2 = new List<double[]>(OutputVectorCollection);
InputVectorCollection.Clear();
OutputVectorCollection.Clear();
int[] shuffledIndices = new int[l2.Count];
shuffledIndices.ShuffledIndices(rand);
for (int i = 0; i < shuffledIndices.Length; i++)
{
InputVectorCollection.Add(l1[shuffledIndices[i]]);
OutputVectorCollection.Add(l2[shuffledIndices[i]]);
}
return;
}
/// <summary>
/// Creates the shallow copy of this bundle.
/// </summary>
public VectorBundle CreateShallowCopy()
{
return new VectorBundle(new List<double[]>(InputVectorCollection), new List<double[]>(OutputVectorCollection));
}
/// <summary>
/// Splits this bundle to a collection of smaller folds (sub-bundles) suitable for the cross-validation.
/// </summary>
/// <param name="foldDataRatio">The requested ratio of the samples constituting the single fold (sub-bundle).</param>
/// <param name="binBorder">When the binBorder is specified then all the output features are considered as binary features within the one-takes-all group and function then keeps balanced ratios of 0 and 1 for every output feature and the fold.</param>
/// <returns>A collection of the created folds.</returns>
public List<VectorBundle> Folderize(double foldDataRatio, double binBorder = double.NaN)
{
if (OutputVectorCollection.Count < 2)
{
throw new InvalidOperationException($"Insufficient number of samples ({OutputVectorCollection.Count.ToString(CultureInfo.InvariantCulture)}).");
}
List<VectorBundle> foldCollection = new List<VectorBundle>();
//Fold data ratio basic correction
if (foldDataRatio > MaxRatioOfFoldData)
{
foldDataRatio = MaxRatioOfFoldData;
}
//Prelimitary fold size estimation
int foldSize = Math.Max(1, (int)Math.Round(OutputVectorCollection.Count * foldDataRatio, 0));
//Prelimitary number of folds
int numOfFolds = (int)Math.Round((double)OutputVectorCollection.Count / foldSize);
//Folds creation
if (double.IsNaN(binBorder))
{
//No binary output -> simple split
int samplesPos = 0;
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
VectorBundle fold = new VectorBundle();
for (int i = 0; i < foldSize && samplesPos < OutputVectorCollection.Count; i++)
{
fold.InputVectorCollection.Add(InputVectorCollection[samplesPos]);
fold.OutputVectorCollection.Add(OutputVectorCollection[samplesPos]);
++samplesPos;
}
foldCollection.Add(fold);
}
//Remaining samples
for (int i = 0; i < OutputVectorCollection.Count - samplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].InputVectorCollection.Add(InputVectorCollection[samplesPos + i]);
foldCollection[foldIdx].OutputVectorCollection.Add(OutputVectorCollection[samplesPos + i]);
}
}//Indifferent output
else
{
//Binary outputs -> keep balanced ratios of outputs
int numOfOutputs = OutputVectorCollection[0].Length;
if (numOfOutputs == 1)
{
//Special case there is only one binary output
//Investigation of the output data metrics
BinDistribution refBinDistr = new BinDistribution(binBorder);
refBinDistr.Update(OutputVectorCollection, 0);
int min01 = Math.Min(refBinDistr.NumOf[0], refBinDistr.NumOf[1]);
if (min01 < 2)
{
throw new InvalidOperationException($"Insufficient bin 0 or 1 samples (less than 2).");
}
if (numOfFolds > min01)
{
numOfFolds = min01;
}
//Scan data
int[] bin0SampleIdxs = new int[refBinDistr.NumOf[0]];
int bin0SamplesPos = 0;
int[] bin1SampleIdxs = new int[refBinDistr.NumOf[1]];
int bin1SamplesPos = 0;
for (int i = 0; i < OutputVectorCollection.Count; i++)
{
if (OutputVectorCollection[i][0] >= refBinDistr.BinBorder)
{
bin1SampleIdxs[bin1SamplesPos++] = i;
}
else
{
bin0SampleIdxs[bin0SamplesPos++] = i;
}
}
//Determine distributions of 0 and 1 for one fold
int bundleBin0Count = Math.Max(1, refBinDistr.NumOf[0] / numOfFolds);
int bundleBin1Count = Math.Max(1, refBinDistr.NumOf[1] / numOfFolds);
//Bundles creation
bin0SamplesPos = 0;
bin1SamplesPos = 0;
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
VectorBundle fold = new VectorBundle();
//Bin 0
for (int i = 0; i < bundleBin0Count; i++)
{
fold.InputVectorCollection.Add(InputVectorCollection[bin0SampleIdxs[bin0SamplesPos]]);
fold.OutputVectorCollection.Add(OutputVectorCollection[bin0SampleIdxs[bin0SamplesPos]]);
++bin0SamplesPos;
}
//Bin 1
for (int i = 0; i < bundleBin1Count; i++)
{
fold.InputVectorCollection.Add(InputVectorCollection[bin1SampleIdxs[bin1SamplesPos]]);
fold.OutputVectorCollection.Add(OutputVectorCollection[bin1SampleIdxs[bin1SamplesPos]]);
++bin1SamplesPos;
}
foldCollection.Add(fold);
}
//Remaining samples
for (int i = 0; i < bin0SampleIdxs.Length - bin0SamplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].InputVectorCollection.Add(InputVectorCollection[bin0SampleIdxs[bin0SamplesPos + i]]);
foldCollection[foldIdx].OutputVectorCollection.Add(OutputVectorCollection[bin0SampleIdxs[bin0SamplesPos + i]]);
}
for (int i = 0; i < bin1SampleIdxs.Length - bin1SamplesPos; i++)
{
int foldIdx = i % foldCollection.Count;
foldCollection[foldIdx].InputVectorCollection.Add(InputVectorCollection[bin1SampleIdxs[bin1SamplesPos + i]]);
foldCollection[foldIdx].OutputVectorCollection.Add(OutputVectorCollection[bin1SampleIdxs[bin1SamplesPos + i]]);
}
}//Only 1 binary output
else
{
//There is more than 1 binary output - "one takes all approach"
//Investigation of the output data metrics
//Collect bin 1 sample indexes and check "one takes all" consistency for every output feature
List<int>[] outBin1SampleIdxs = new List<int>[numOfOutputs];
for (int i = 0; i < numOfOutputs; i++)
{
outBin1SampleIdxs[i] = new List<int>();
}
for (int sampleIdx = 0; sampleIdx < OutputVectorCollection.Count; sampleIdx++)
{
int numOf1 = 0;
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
if (OutputVectorCollection[sampleIdx][outFeatureIdx] >= binBorder)
{
outBin1SampleIdxs[outFeatureIdx].Add(sampleIdx);
++numOf1;
}
}
if (numOf1 != 1)
{
throw new ArgumentException($"Data are inconsistent on data index {sampleIdx.ToString(CultureInfo.InvariantCulture)}. Output vector has {numOf1.ToString(CultureInfo.InvariantCulture)} feature(s) having bin value 1.", "binBorder");
}
}
//Determine max possible number of folds
int maxNumOfFolds = OutputVectorCollection.Count;
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
int outFeatureMaxFolds = Math.Min(outBin1SampleIdxs[outFeatureIdx].Count, OutputVectorCollection.Count - outBin1SampleIdxs[outFeatureIdx].Count);
maxNumOfFolds = Math.Min(outFeatureMaxFolds, maxNumOfFolds);
}
//Correct the number of folds to be created
if (numOfFolds > maxNumOfFolds)
{
numOfFolds = maxNumOfFolds;
}
//Create the folds
for (int foldIdx = 0; foldIdx < numOfFolds; foldIdx++)
{
foldCollection.Add(new VectorBundle());
}
//Samples distribution
for (int outFeatureIdx = 0; outFeatureIdx < numOfOutputs; outFeatureIdx++)
{
for (int bin1SampleRefIdx = 0; bin1SampleRefIdx < outBin1SampleIdxs[outFeatureIdx].Count; bin1SampleRefIdx++)
{
int foldIdx = bin1SampleRefIdx % foldCollection.Count;
int dataIdx = outBin1SampleIdxs[outFeatureIdx][bin1SampleRefIdx];
foldCollection[foldIdx].AddPair(InputVectorCollection[dataIdx], OutputVectorCollection[dataIdx]);
}
}
}//More binary outputs
}//Binary output
return foldCollection;
}
}//VectorBundle
}//Namespace