This repository was archived by the owner on May 11, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathNeuralPreprocessor.cs
659 lines (624 loc) · 33 KB
/
NeuralPreprocessor.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
using RCNet.Extensions;
using RCNet.MathTools;
using RCNet.Neural.Data;
using RCNet.Neural.Network.SM.Preprocessing.Input;
using RCNet.Neural.Network.SM.Preprocessing.Neuron.Predictor;
using RCNet.Neural.Network.SM.Preprocessing.Reservoir;
using System;
using System.Collections.Generic;
using System.Globalization;
using System.Text;
using System.Threading.Tasks;
namespace RCNet.Neural.Network.SM.Preprocessing
{
/// <summary>
/// Implements the neural preprocessor supporting multiple reservoirs.
/// </summary>
[Serializable]
public class NeuralPreprocessor
{
//Enums
/// <summary>
/// The way of bidirectional processing of input pattern.
/// </summary>
public enum BidirProcessing
{
/// <summary>
/// Enabled bi-directional processing without reservoir reset when the direction to be turned.
/// </summary>
Continuous,
/// <summary>
/// Enabled bi-directional processing with reservoir reset when the direction to be turned.
/// </summary>
WithReset,
/// <summary>
/// The bi-directional processing is forbidden.
/// </summary>
Forbidden
}
//Delegates
/// <summary>
/// The delegate of the PreprocessingProgressChanged event handler.
/// </summary>
/// <param name="totalNumOfInputs">The total number of inputs to be processed.</param>
/// <param name="numOfProcessedInputs">The number of already processed inputs.</param>
/// <param name="finalPreprocessingOverview">The final overview of the preprocessing.</param>
public delegate void PreprocessingProgressChangedHandler(int totalNumOfInputs,
int numOfProcessedInputs,
PreprocessingOverview finalPreprocessingOverview
);
//Events
/// <summary>
/// This informative event occurs every time the progress of neural preprocessing has changed.
/// </summary>
[field: NonSerialized]
public event PreprocessingProgressChangedHandler PreprocessingProgressChanged;
//Attribute properties
/// <summary>
/// The collection of reservoir instances.
/// </summary>
public List<ReservoirInstance> ReservoirCollection { get; }
/// <summary>
/// The number of boot cycles.
/// </summary>
public int BootCycles { get; }
/// <summary>
/// The total number of hidden neurons in all reservoirs.
/// </summary>
public int TotalNumOfHiddenNeurons { get; }
/// <summary>
/// The descriptors of all predictors.
/// </summary>
public List<PredictorDescriptor> PredictorDescriptorCollection { get; private set; }
/// <summary>
/// The collection of switches generally enabling/disabling the predictors.
/// </summary>
public bool[] OutputFeatureGeneralSwitchCollection { get; private set; }
/// <summary>
/// The number of active predictors (predictors + routed inputs).
/// </summary>
public int NumOfActivePredictors { get; private set; }
//Attributes
private readonly NeuralPreprocessorSettings _preprocessorCfg;
private readonly InputEncoder _inputEncoder;
private List<int> _predictorsTimePointSlicesPlan;
private int _totalNumOfReservoirsPredictors;
//Constructor
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="preprocessorCfg">The configuration of the neural preprocessor.</param>
/// <param name="randomizerSeek">The random number generator initial seek.</param>
public NeuralPreprocessor(NeuralPreprocessorSettings preprocessorCfg, int randomizerSeek)
{
_preprocessorCfg = (NeuralPreprocessorSettings)preprocessorCfg.DeepClone();
TotalNumOfHiddenNeurons = 0;
///////////////////////////////////////////////////////////////////////////////////
//Input encoder
_inputEncoder = new InputEncoder(_preprocessorCfg.InputEncoderCfg);
///////////////////////////////////////////////////////////////////////////////////
//Reservoir instance(s)
BootCycles = 0;
//Random generator used for reservoir structure initialization
Random rand = (randomizerSeek < 0 ? new Random() : new Random(randomizerSeek));
ReservoirCollection = new List<ReservoirInstance>(_preprocessorCfg.ReservoirInstancesCfg.ReservoirInstanceCfgCollection.Count);
int reservoirInstanceID = 0;
int defaultBootCycles = 0;
foreach (ReservoirInstanceSettings reservoirInstanceCfg in _preprocessorCfg.ReservoirInstancesCfg.ReservoirInstanceCfgCollection)
{
ReservoirStructureSettings structCfg = _preprocessorCfg.ReservoirStructuresCfg.GetReservoirStructureCfg(reservoirInstanceCfg.StructureCfgName);
ReservoirInstance reservoir = new ReservoirInstance(reservoirInstanceID++,
structCfg,
reservoirInstanceCfg,
_inputEncoder,
rand
);
ReservoirCollection.Add(reservoir);
TotalNumOfHiddenNeurons += reservoir.Size;
defaultBootCycles = Math.Max(defaultBootCycles, reservoir.GetDefaultBootCycles());
}
//Boot cycles setup
if (_preprocessorCfg.InputEncoderCfg.FeedingCfg.FeedingType == InputEncoder.InputFeedingType.Continuous)
{
FeedingContinuousSettings feedingCfg = (FeedingContinuousSettings)preprocessorCfg.InputEncoderCfg.FeedingCfg;
BootCycles = feedingCfg.BootCycles == FeedingContinuousSettings.AutoBootCyclesNum ? defaultBootCycles : feedingCfg.BootCycles;
}
else
{
BootCycles = 0;
}
//Output features
_totalNumOfReservoirsPredictors = 0;
_predictorsTimePointSlicesPlan = null;
PredictorDescriptorCollection = null;
OutputFeatureGeneralSwitchCollection = null;
NumOfActivePredictors = 0;
return;
}
//Properties
/// <inheritdoc cref="BidirProcessing"/>
private BidirProcessing Bidir
{
get
{
return _preprocessorCfg.InputEncoderCfg.FeedingCfg.FeedingType == InputEncoder.InputFeedingType.Patterned ? ((FeedingPatternedSettings)_preprocessorCfg.InputEncoderCfg.FeedingCfg).Bidir : BidirProcessing.Forbidden;
}
}
/// <summary>
/// Gets the number of suppressed predictors.
/// </summary>
public int NumOfSuppressedPredictors { get { return PredictorDescriptorCollection.Count - NumOfActivePredictors; } }
//Methods
/// <summary>
/// Compares two predictors.
/// </summary>
/// <param name="p1">Predictor 1.</param>
/// <param name="p2">Predictor 2.</param>
public static int ComparePredictors(Tuple<int, double> p1, Tuple<int, double> p2)
{
if (p1.Item2 > p2.Item2)
{
return -1;
}
else if (p1.Item2 < p2.Item2)
{
return 1;
}
else
{
return 0;
}
}
/// <summary>
/// Initializes the collection of predictors descriptors.
/// </summary>
private void InitPredictorsDescriptors()
{
//Final descriptors collection
PredictorDescriptorCollection = new List<PredictorDescriptor>();
//Routed input values
if (_inputEncoder.NumOfRoutedValues > 0)
{
PredictorDescriptorCollection.AddRange(_inputEncoder.GetPredictorsDescriptorsOfRoutedInputs());
}
//Hidden neurons predictors
List<PredictorDescriptor> reservoirsPredictorDescriptorCollection = new List<PredictorDescriptor>();
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
reservoirsPredictorDescriptorCollection.AddRange(reservoir.GetPredictorsDescriptors());
}
if (_preprocessorCfg.InputEncoderCfg.FeedingCfg.FeedingType == InputEncoder.InputFeedingType.Continuous)
{
//Continuous feeding
PredictorDescriptorCollection.AddRange(reservoirsPredictorDescriptorCollection);
_totalNumOfReservoirsPredictors = reservoirsPredictorDescriptorCollection.Count;
}
else
{
//Patterned feeding
FeedingPatternedSettings patternedCfg = (FeedingPatternedSettings)_preprocessorCfg.InputEncoderCfg.FeedingCfg;
for (int i = 0; i < (patternedCfg.Bidir != BidirProcessing.Forbidden ? 2 : 1); i++)
{
for (int j = 0; j < patternedCfg.Slices; j++)
{
PredictorDescriptorCollection.AddRange(reservoirsPredictorDescriptorCollection);
_totalNumOfReservoirsPredictors += reservoirsPredictorDescriptorCollection.Count;
}
}
//Predictors time-point slices plan
if (_inputEncoder.NumOfTimePoints != InputEncoder.VariableNumOfTimePoints)
{
//Check correctness
if (patternedCfg.Slices > _inputEncoder.NumOfTimePoints)
{
throw new InvalidOperationException("Resulting number of input pattern's time points is less than requested number of slices of predictors.");
}
//Build plan
_predictorsTimePointSlicesPlan = new List<int>(patternedCfg.Slices);
double avgDistance = (double)_inputEncoder.NumOfTimePoints / (double)patternedCfg.Slices;
//The first phase - naive distribution of time-points
double countDown = _inputEncoder.NumOfTimePoints;
int lastTimePoint = -1;
while ((int)Math.Round(countDown, 0) >= 1 && _predictorsTimePointSlicesPlan.Count < patternedCfg.Slices)
{
int roundedTimePoint = (int)Math.Round(countDown, 0, MidpointRounding.AwayFromZero);
if (roundedTimePoint != lastTimePoint)
{
_predictorsTimePointSlicesPlan.Insert(0, roundedTimePoint);
lastTimePoint = roundedTimePoint;
}
countDown -= avgDistance;
}
//Second phase - distribution of remaining time-points
while (_predictorsTimePointSlicesPlan.Count < patternedCfg.Slices)
{
for (int i = _predictorsTimePointSlicesPlan.Count - 2; i > -1; i--)
{
int span = _predictorsTimePointSlicesPlan[i + 1] - (i >= 0 ? _predictorsTimePointSlicesPlan[i] : 1);
if (span > 1)
{
int timePoint = (i >= 0 ? _predictorsTimePointSlicesPlan[i] : 1) + (int)Math.Round(span / 2d, 0, MidpointRounding.AwayFromZero);
_predictorsTimePointSlicesPlan.Insert(i + 1, timePoint);
if (_predictorsTimePointSlicesPlan.Count == patternedCfg.Slices)
{
break;
}
}
}
}
}
}
return;
}
/// <summary>
/// Checks the predictors and sets the general enabling/disabling switches.
/// </summary>
/// <param name="predictorsCollection">The collection of predictors.</param>
private void InitOutputFeaturesGeneralSwitches(List<double[]> predictorsCollection)
{
//Allocate general switches
OutputFeatureGeneralSwitchCollection = new bool[PredictorDescriptorCollection.Count];
//Init general predictor switches to false
OutputFeatureGeneralSwitchCollection.Populate(false);
//Compute statistics on predictors
Tuple<int, double>[] predictorValueSpanCollection = new Tuple<int, double>[PredictorDescriptorCollection.Count];
Parallel.For(0, PredictorDescriptorCollection.Count, i =>
{
BasicStat stat = new BasicStat();
for (int row = 0; row < predictorsCollection.Count; row++)
{
stat.AddSample(predictorsCollection[row][i]);
}
//Use predictor's value span as a differentiator
predictorValueSpanCollection[i] = new Tuple<int, double>(i, stat.Span);
});
//Sort collected predictor differentiators
Array.Sort(predictorValueSpanCollection, ComparePredictors);
//Enable predictors
int numOfPredictorsToBeRejected = (int)(Math.Round(PredictorDescriptorCollection.Count * _preprocessorCfg.PredictorsReductionRatio));
int firstIndexToBeRejected = predictorValueSpanCollection.Length - numOfPredictorsToBeRejected;
NumOfActivePredictors = 0;
for (int i = 0; i < predictorValueSpanCollection.Length; i++)
{
if (predictorValueSpanCollection[i].Item2 > _preprocessorCfg.PredictorValueMinSpan && i < firstIndexToBeRejected)
{
//Enable predictor
OutputFeatureGeneralSwitchCollection[predictorValueSpanCollection[i].Item1] = true;
++NumOfActivePredictors;
}
}
return;
}
/// <summary>
/// Resets the neural preprocessor to its initial state.
/// </summary>
public void Reset()
{
//Reset input encoder
_inputEncoder.Reset();
//Reset reservoirs
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
reservoir.Reset(true);
}
//Reset predictors related members
_totalNumOfReservoirsPredictors = 0;
_predictorsTimePointSlicesPlan = null;
NumOfActivePredictors = 0;
PredictorDescriptorCollection = null;
OutputFeatureGeneralSwitchCollection = null;
return;
}
/// <summary>
/// Resets the reservoir instances.
/// </summary>
/// <param name="resetStatistics">Specifies whether to reset the reservoir statistics.</param>
private void ResetReservoirs(bool resetStatistics)
{
//Reset reservoirs
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
reservoir.Reset(resetStatistics);
}
return;
}
/// <summary>
/// Preprocesses all pending input data prepared by InputEncoder and collects the predictors.
/// </summary>
/// <param name="collectStatistics">Indicates whether to update internal statistics.</param>
private double[] ProcessPendingData(bool collectStatistics)
{
double[] predictors = new double[_totalNumOfReservoirsPredictors / (Bidir == BidirProcessing.Forbidden ? 1 : 2)];
int predictorsIdx = 0;
int predictorsTimePointSlicesPlanIdx = 0;
int computationStep = 1;
//Loop pending data
while (_inputEncoder.NumOfRemainingInputs > 0)
{
_inputEncoder.EncodeNextInputData();
while (_inputEncoder.Fetch(collectStatistics))
{
//Compute reservoir(s)
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
reservoir.Compute(collectStatistics);
}
}
if ((_predictorsTimePointSlicesPlan != null && computationStep == _predictorsTimePointSlicesPlan[predictorsTimePointSlicesPlanIdx]) ||
(_predictorsTimePointSlicesPlan == null && _inputEncoder.NumOfRemainingInputs == 0))
{
//Collect predictors from reservoirs
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
predictorsIdx += reservoir.CopyPredictorsTo(predictors, predictorsIdx);
}
++predictorsTimePointSlicesPlanIdx;
}
++computationStep;
}
return predictors;
}
/// <summary>
/// Pushes an external input vector into the input encoder, computes reservoirs and returns the predictors.
/// </summary>
/// <param name="inputVector">An external input vector.</param>
/// <param name="collectStatistics">Indicates whether to update internal statistics.</param>
private double[] PushExtInputVector(double[] inputVector, bool collectStatistics)
{
//Output features buffer allocation and index
double[] outputFeatures = new double[PredictorDescriptorCollection.Count];
int outputFeaturesIdx = 0;
//Put new data into the InputEncoder
_inputEncoder.StoreNewData(inputVector);
//Collect routed input data
outputFeaturesIdx += _inputEncoder.CopyRoutedInputsTo(outputFeatures, outputFeaturesIdx);
//Reset reservoirs in case of patterned feeding
if (_preprocessorCfg.InputEncoderCfg.FeedingCfg.FeedingType == InputEncoder.InputFeedingType.Patterned)
{
ResetReservoirs(false);
}
//Process input data in reservoirs and collect predictors
double[] predictors = ProcessPendingData(collectStatistics);
predictors.CopyTo(outputFeatures, outputFeaturesIdx);
outputFeaturesIdx += predictors.Length;
//Bidirectional input processing?
if (Bidir != BidirProcessing.Forbidden)
{
if (Bidir == BidirProcessing.WithReset)
{
ResetReservoirs(false);
}
//Set reverse mode
_inputEncoder.SetReverseMode();
//Process reversed input data in reservoirs
predictors = ProcessPendingData(collectStatistics);
predictors.CopyTo(outputFeatures, outputFeaturesIdx);
}
return outputFeatures;
}
/// <summary>
/// Pushes an external input data into the preprocessor and returns the predictors.
/// </summary>
/// <param name="input">The external input data in natural form.</param>
public double[] Preprocess(double[] input)
{
if (OutputFeatureGeneralSwitchCollection == null)
{
throw new InvalidOperationException($"Preprocessor is not initialized. Call InitializeAndPreprocessBundle method first.");
}
return PushExtInputVector(input, false);
}
/// <summary>
/// Initializes the preprocessor, preprocess the specified data bundle and returns the predictors together with the ideal values.
/// </summary>
/// <param name="inputBundle">The data bundle to be preprocessed.</param>
/// <param name="preprocessingOverview">The statistics and other important information related to data preprocessing.</param>
public VectorBundle InitializeAndPreprocessBundle(VectorBundle inputBundle, out PreprocessingOverview preprocessingOverview)
{
//Check amount of input data
if (BootCycles > 0 && inputBundle.InputVectorCollection.Count <= BootCycles)
{
throw new InvalidOperationException($"Insufficient number of input data instances. The number of instances must be greater than the number of boot cycles ({BootCycles.ToString(CultureInfo.InvariantCulture)}).");
}
//Reset reservoirs
ResetReservoirs(true);
//Reset input encoder and initialize its feature filters
_inputEncoder.Initialize(inputBundle);
//Initialize output features descriptors
InitPredictorsDescriptors();
//Allocate output bundle
VectorBundle outputBundle = new VectorBundle(inputBundle.InputVectorCollection.Count);
//Process data
//Collect predictors
for (int dataSetIdx = 0; dataSetIdx < inputBundle.InputVectorCollection.Count; dataSetIdx++)
{
bool readyToCollect = dataSetIdx >= BootCycles || _preprocessorCfg.InputEncoderCfg.FeedingCfg.FeedingType == InputEncoder.InputFeedingType.Patterned;
//Push input data into the network
double[] outputFeatures = PushExtInputVector(inputBundle.InputVectorCollection[dataSetIdx], readyToCollect);
//Collect output features?
if (readyToCollect)
{
//Predictors
outputBundle.InputVectorCollection.Add(outputFeatures);
//Desired outputs
outputBundle.OutputVectorCollection.Add(inputBundle.OutputVectorCollection[dataSetIdx]);
}
//Raise informative event
PreprocessingProgressChanged?.Invoke(inputBundle.InputVectorCollection.Count, dataSetIdx + 1, null);
}
//Initialize output features switches
InitOutputFeaturesGeneralSwitches(outputBundle.InputVectorCollection);
//Buld preprocessing overview
preprocessingOverview = new PreprocessingOverview(CollectStatatistics(),
TotalNumOfHiddenNeurons,
PredictorDescriptorCollection.Count,
NumOfSuppressedPredictors,
NumOfActivePredictors
);
//Raise final informative event
PreprocessingProgressChanged(inputBundle.InputVectorCollection.Count, inputBundle.InputVectorCollection.Count, preprocessingOverview);
//Return output
return outputBundle;
}
/// <summary>
/// Collects the statistics of the reservoir instances.
/// </summary>
/// <remarks>
/// It is very important to follow these statistics to make sure the reservoirs exhibit the proper behavior.
/// </remarks>
public List<ReservoirStat> CollectStatatistics()
{
List<ReservoirStat> stats = new List<ReservoirStat>();
foreach (ReservoirInstance reservoir in ReservoirCollection)
{
stats.Add(reservoir.CollectStatistics());
}
return stats;
}
//Inner classes
/// <summary>
/// Implements an overview of the data bundle preprocessing.
/// </summary>
[Serializable]
public class PreprocessingOverview
{
//Attribute properties
/// <summary>
/// The collection of the reservoirs statistics.
/// </summary>
public List<ReservoirStat> ReservoirStatCollection { get; }
/// <summary>
/// The total number of neurons.
/// </summary>
public int TotalNumOfNeurons { get; }
/// <summary>
/// The total number of predictors.
/// </summary>
public int TotalNumOfPredictors { get; }
/// <summary>
/// The number of suppressed predictors.
/// </summary>
public int NumOfSuppressedPredictors { get; }
/// <summary>
/// The number of active predictors.
/// </summary>
public int NumOfActivePredictors { get; }
//Constructor
/// <summary>
/// Creates an initialized instance.
/// </summary>
/// <param name="reservoirStatCollection">The collection of the reservoirs statistics.</param>
/// <param name="totalNumOfNeurons">The total number of neurons.</param>
/// <param name="totalNumOfPredictors">The total number of predictors.</param>
/// <param name="numOfSuppressedPredictors">The number of suppressed predictors.</param>
/// <param name="numOfActivePredictors">The number of active predictors.</param>
public PreprocessingOverview(List<ReservoirStat> reservoirStatCollection,
int totalNumOfNeurons,
int totalNumOfPredictors,
int numOfSuppressedPredictors,
int numOfActivePredictors
)
{
ReservoirStatCollection = reservoirStatCollection;
TotalNumOfNeurons = totalNumOfNeurons;
TotalNumOfPredictors = totalNumOfPredictors;
NumOfSuppressedPredictors = numOfSuppressedPredictors;
NumOfActivePredictors = numOfActivePredictors;
return;
}
//Methods
private string FNum(double num)
{
return num.ToString("N8", CultureInfo.InvariantCulture).PadLeft(12);
}
private string StatLine(BasicStat stat)
{
return $"Avg:{FNum(stat.ArithAvg)}, Max:{FNum(stat.Max)}, Min:{FNum(stat.Min)}, StdDev:{FNum(stat.StdDev)}";
}
private void AppendStandardStatSet(int margin, StringBuilder sb, ReservoirStat.StandardStatSet sss)
{
string leftMargin = margin == 0 ? string.Empty : new string(' ', margin);
sb.Append(leftMargin + $" Avg> {StatLine(sss.AvgStat)}" + Environment.NewLine);
sb.Append(leftMargin + $" Max> {StatLine(sss.MaxStat)}" + Environment.NewLine);
sb.Append(leftMargin + $" Min> {StatLine(sss.MinStat)}" + Environment.NewLine);
sb.Append(leftMargin + $"Span> {StatLine(sss.SpanStat)}" + Environment.NewLine);
return;
}
private void AppendSynapsesStat(int margin, StringBuilder sb, ReservoirStat.SynapsesByRoleStat srs)
{
string leftMargin = margin == 0 ? string.Empty : new string(' ', margin);
sb.Append(leftMargin + $"Synapses" + Environment.NewLine);
foreach (ReservoirStat.SynapseStat synapseStat in srs.SynapseRole)
{
sb.Append(leftMargin + $" {synapseStat.Role}: {((double)synapseStat.Count / (double)srs.Count).ToString(CultureInfo.InvariantCulture)} ({synapseStat.Count})" + Environment.NewLine);
if (synapseStat.Count > 0)
{
sb.Append(leftMargin + $" Distance: {StatLine(synapseStat.Distance)}" + Environment.NewLine);
sb.Append(leftMargin + $" Delay: {StatLine(synapseStat.Delay)}" + Environment.NewLine);
sb.Append(leftMargin + $" Weight: {StatLine(synapseStat.Weight)}" + Environment.NewLine);
sb.Append(leftMargin + $" Efficacy statistics" + Environment.NewLine);
AppendStandardStatSet(margin + 12, sb, synapseStat.Efficacy);
}
}
return;
}
private void AppendNeuronAnomalies(int margin, StringBuilder sb, ReservoirStat.NeuronsAnomaliesStat nas)
{
string leftMargin = margin == 0 ? string.Empty : new string(' ', margin);
sb.Append(leftMargin + $"Neurons anomalies" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.NoResSynapses} neurons have no internal synapses from other reservoir neurons" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.NoResStimuli} neurons receive no stimulation from the reservoir" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.NoAnalogOutput} neurons generate zero analog signal" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.ConstAnalogOutput} neurons generate constant nonzero analog signal" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.NotFiring} neurons don't spike" + Environment.NewLine);
sb.Append(leftMargin + $" {nas.ConstFiring} neurons constantly fire" + Environment.NewLine);
return;
}
/// <summary>
/// Builds the text report.
/// </summary>
/// <param name="margin">Specifies the text left margin.</param>
/// <returns>The built text report.</returns>
public string CreateReport(int margin = 0)
{
string leftMargin = margin == 0 ? string.Empty : new string(' ', margin);
string resWording = ReservoirStatCollection.Count == 1 ? "reservoir" : "reservoirs";
StringBuilder sb = new StringBuilder();
sb.Append(leftMargin + $"Neural preprocessor ({ReservoirStatCollection.Count} {resWording}, {TotalNumOfNeurons} neurons)" + Environment.NewLine);
foreach (ReservoirStat resStat in ReservoirStatCollection)
{
sb.Append(leftMargin + $" Reservoir: {resStat.InstanceName} (configuration {resStat.StructCfgName}, {resStat.TotalNumOfNeurons} neurons)" + Environment.NewLine);
AppendNeuronAnomalies(margin + 8, sb, resStat.NeuronsAnomalies);
AppendSynapsesStat(margin + 8, sb, resStat.Synapses);
foreach (ReservoirStat.PoolStat poolStat in resStat.Pools)
{
sb.Append(leftMargin + $" Pool: {poolStat.PoolName} ({poolStat.NumOfNeurons} neurons)" + Environment.NewLine);
AppendNeuronAnomalies(margin + 12, sb, poolStat.NeuronsAnomalies);
AppendSynapsesStat(margin + 12, sb, poolStat.Synapses);
foreach (ReservoirStat.PoolStat.NeuronGroupStat groupStat in poolStat.NeuronGroups)
{
sb.Append(leftMargin + $" Group: {groupStat.GroupName} ({groupStat.NumOfNeurons} neurons)" + Environment.NewLine);
AppendNeuronAnomalies(margin + 16, sb, groupStat.NeuronsAnomalies);
AppendSynapsesStat(margin + 16, sb, groupStat.Synapses);
sb.Append(leftMargin + $" Stimulation from input neurons" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Stimuli.Input);
sb.Append(leftMargin + $" Stimulation from reservoir neurons" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Stimuli.Reservoir);
sb.Append(leftMargin + $" Total stimulation (including Bias)" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Stimuli.Total);
sb.Append(leftMargin + $" Activation" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Activation);
sb.Append(leftMargin + $" Analog output" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Signal.Analog);
sb.Append(leftMargin + $" Firing output" + Environment.NewLine);
AppendStandardStatSet(margin + 20, sb, groupStat.Signal.Spiking);
}
}
}
sb.Append(Environment.NewLine);
sb.Append(leftMargin + $"Total number of predictors: {TotalNumOfPredictors}, suppressed (unused) predictors: {NumOfSuppressedPredictors}, used predictors: {NumOfActivePredictors}" + Environment.NewLine);
return sb.ToString();
}
}//PreprocessingOverview
}//NeuralPreprocessor
}//Namespace