forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathintrinsics.rs
392 lines (376 loc) · 16.6 KB
/
intrinsics.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//! Intrinsics and other functions that the miri engine executes without
//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
//! and miri.
use syntax::symbol::Symbol;
use rustc::ty;
use rustc::ty::layout::{LayoutOf, Primitive, Size};
use rustc::ty::subst::SubstsRef;
use rustc::hir::def_id::DefId;
use rustc::ty::TyCtxt;
use rustc::mir::BinOp;
use rustc::mir::interpret::{InterpResult, Scalar, GlobalId, ConstValue};
use super::{
Machine, PlaceTy, OpTy, InterpCx, ImmTy,
};
mod type_name;
fn numeric_intrinsic<'tcx, Tag>(
name: &str,
bits: u128,
kind: Primitive,
) -> InterpResult<'tcx, Scalar<Tag>> {
let size = match kind {
Primitive::Int(integer, _) => integer.size(),
_ => bug!("invalid `{}` argument: {:?}", name, bits),
};
let extra = 128 - size.bits() as u128;
let bits_out = match name {
"ctpop" => bits.count_ones() as u128,
"ctlz" => bits.leading_zeros() as u128 - extra,
"cttz" => (bits << extra).trailing_zeros() as u128 - extra,
"bswap" => (bits << extra).swap_bytes(),
"bitreverse" => (bits << extra).reverse_bits(),
_ => bug!("not a numeric intrinsic: {}", name),
};
Ok(Scalar::from_uint(bits_out, size))
}
/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
crate fn eval_nullary_intrinsic<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
def_id: DefId,
substs: SubstsRef<'tcx>,
) -> InterpResult<'tcx, &'tcx ty::Const<'tcx>> {
let tp_ty = substs.type_at(0);
let name = &*tcx.item_name(def_id).as_str();
Ok(match name {
"type_name" => {
let alloc = type_name::alloc_type_name(tcx, tp_ty);
tcx.mk_const(ty::Const {
val: ConstValue::Slice {
data: alloc,
start: 0,
end: alloc.len(),
},
ty: tcx.mk_static_str(),
})
},
"needs_drop" => ty::Const::from_bool(tcx, tp_ty.needs_drop(tcx, param_env)),
"size_of" |
"min_align_of" |
"pref_align_of" => {
let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
let n = match name {
"pref_align_of" => layout.align.pref.bytes(),
"min_align_of" => layout.align.abi.bytes(),
"size_of" => layout.size.bytes(),
_ => bug!(),
};
ty::Const::from_usize(tcx, n)
},
"type_id" => ty::Const::from_bits(
tcx,
tcx.type_id_hash(tp_ty).into(),
param_env.and(tcx.types.u64),
),
other => bug!("`{}` is not a zero arg intrinsic", other),
})
}
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
/// Returns `true` if emulation happened.
pub fn emulate_intrinsic(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx, bool> {
let substs = instance.substs;
let intrinsic_name = &self.tcx.item_name(instance.def_id()).as_str()[..];
match intrinsic_name {
"min_align_of" |
"pref_align_of" |
"needs_drop" |
"size_of" |
"type_id" |
"type_name" => {
let gid = GlobalId {
instance,
promoted: None,
};
let val = self.tcx.const_eval(self.param_env.and(gid))?;
let val = self.eval_const_to_op(val, None)?;
self.copy_op(val, dest)?;
}
| "ctpop"
| "cttz"
| "cttz_nonzero"
| "ctlz"
| "ctlz_nonzero"
| "bswap"
| "bitreverse" => {
let ty = substs.type_at(0);
let layout_of = self.layout_of(ty)?;
let val = self.read_scalar(args[0])?.not_undef()?;
let bits = self.force_bits(val, layout_of.size)?;
let kind = match layout_of.abi {
ty::layout::Abi::Scalar(ref scalar) => scalar.value,
_ => throw_unsup!(TypeNotPrimitive(ty)),
};
let out_val = if intrinsic_name.ends_with("_nonzero") {
if bits == 0 {
throw_ub_format!("`{}` called on 0", intrinsic_name);
}
numeric_intrinsic(intrinsic_name.trim_end_matches("_nonzero"), bits, kind)?
} else {
numeric_intrinsic(intrinsic_name, bits, kind)?
};
self.write_scalar(out_val, dest)?;
}
| "wrapping_add"
| "wrapping_sub"
| "wrapping_mul"
| "add_with_overflow"
| "sub_with_overflow"
| "mul_with_overflow" => {
let lhs = self.read_immediate(args[0])?;
let rhs = self.read_immediate(args[1])?;
let (bin_op, ignore_overflow) = match intrinsic_name {
"wrapping_add" => (BinOp::Add, true),
"wrapping_sub" => (BinOp::Sub, true),
"wrapping_mul" => (BinOp::Mul, true),
"add_with_overflow" => (BinOp::Add, false),
"sub_with_overflow" => (BinOp::Sub, false),
"mul_with_overflow" => (BinOp::Mul, false),
_ => bug!("Already checked for int ops")
};
if ignore_overflow {
self.binop_ignore_overflow(bin_op, lhs, rhs, dest)?;
} else {
self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
}
}
"saturating_add" | "saturating_sub" => {
let l = self.read_immediate(args[0])?;
let r = self.read_immediate(args[1])?;
let is_add = intrinsic_name == "saturating_add";
let (val, overflowed, _ty) = self.overflowing_binary_op(if is_add {
BinOp::Add
} else {
BinOp::Sub
}, l, r)?;
let val = if overflowed {
let num_bits = l.layout.size.bits();
if l.layout.abi.is_signed() {
// For signed ints the saturated value depends on the sign of the first
// term since the sign of the second term can be inferred from this and
// the fact that the operation has overflowed (if either is 0 no
// overflow can occur)
let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
let first_term_positive = first_term & (1 << (num_bits-1)) == 0;
if first_term_positive {
// Negative overflow not possible since the positive first term
// can only increase an (in range) negative term for addition
// or corresponding negated positive term for subtraction
Scalar::from_uint((1u128 << (num_bits - 1)) - 1, // max positive
Size::from_bits(num_bits))
} else {
// Positive overflow not possible for similar reason
// max negative
Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
}
} else { // unsigned
if is_add {
// max unsigned
Scalar::from_uint(u128::max_value() >> (128 - num_bits),
Size::from_bits(num_bits))
} else { // underflow to 0
Scalar::from_uint(0u128, Size::from_bits(num_bits))
}
}
} else {
val
};
self.write_scalar(val, dest)?;
}
"unchecked_shl" | "unchecked_shr" => {
let l = self.read_immediate(args[0])?;
let r = self.read_immediate(args[1])?;
let bin_op = match intrinsic_name {
"unchecked_shl" => BinOp::Shl,
"unchecked_shr" => BinOp::Shr,
_ => bug!("Already checked for int ops")
};
let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
if overflowed {
let layout = self.layout_of(substs.type_at(0))?;
let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
throw_ub_format!("Overflowing shift by {} in `{}`", r_val, intrinsic_name);
}
self.write_scalar(val, dest)?;
}
"rotate_left" | "rotate_right" => {
// rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
let layout = self.layout_of(substs.type_at(0))?;
let val = self.read_scalar(args[0])?.not_undef()?;
let val_bits = self.force_bits(val, layout.size)?;
let raw_shift = self.read_scalar(args[1])?.not_undef()?;
let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
let width_bits = layout.size.bits() as u128;
let shift_bits = raw_shift_bits % width_bits;
let inv_shift_bits = (width_bits - shift_bits) % width_bits;
let result_bits = if intrinsic_name == "rotate_left" {
(val_bits << shift_bits) | (val_bits >> inv_shift_bits)
} else {
(val_bits >> shift_bits) | (val_bits << inv_shift_bits)
};
let truncated_bits = self.truncate(result_bits, layout);
let result = Scalar::from_uint(truncated_bits, layout.size);
self.write_scalar(result, dest)?;
}
"ptr_offset_from" => {
let a = self.read_immediate(args[0])?.to_scalar()?.to_ptr()?;
let b = self.read_immediate(args[1])?.to_scalar()?.to_ptr()?;
if a.alloc_id != b.alloc_id {
throw_ub_format!(
"ptr_offset_from cannot compute offset of pointers into different \
allocations.",
);
}
let usize_layout = self.layout_of(self.tcx.types.usize)?;
let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
let (val, _overflowed, _ty) = self.overflowing_binary_op(
BinOp::Sub, a_offset, b_offset,
)?;
let pointee_layout = self.layout_of(substs.type_at(0))?;
let isize_layout = self.layout_of(self.tcx.types.isize)?;
let val = ImmTy::from_scalar(val, isize_layout);
let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
self.exact_div(val, size, dest)?;
}
"transmute" => {
self.copy_op_transmute(args[0], dest)?;
}
"simd_insert" => {
let index = self.read_scalar(args[1])?.to_u32()? as u64;
let scalar = args[2];
let input = args[0];
let (len, e_ty) = self.read_vector_ty(input);
assert!(
index < len,
"Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
index, e_ty, len
);
assert_eq!(
input.layout, dest.layout,
"Return type `{}` must match vector type `{}`",
dest.layout.ty, input.layout.ty
);
assert_eq!(
scalar.layout.ty, e_ty,
"Scalar type `{}` must match vector element type `{}`",
scalar.layout.ty, e_ty
);
for i in 0..len {
let place = self.place_field(dest, i)?;
let value = if i == index {
scalar
} else {
self.operand_field(input, i)?
};
self.copy_op(value, place)?;
}
}
"simd_extract" => {
let index = self.read_scalar(args[1])?.to_u32()? as _;
let (len, e_ty) = self.read_vector_ty(args[0]);
assert!(
index < len,
"index `{}` is out-of-bounds of vector type `{}` with length `{}`",
index, e_ty, len
);
assert_eq!(
e_ty, dest.layout.ty,
"Return type `{}` must match vector element type `{}`",
dest.layout.ty, e_ty
);
self.copy_op(self.operand_field(args[0], index)?, dest)?;
}
_ => return Ok(false),
}
Ok(true)
}
/// "Intercept" a function call because we have something special to do for it.
/// Returns `true` if an intercept happened.
pub fn hook_fn(
&mut self,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx, M::PointerTag>],
_dest: Option<PlaceTy<'tcx, M::PointerTag>>,
) -> InterpResult<'tcx, bool> {
let def_id = instance.def_id();
if Some(def_id) == self.tcx.lang_items().panic_fn() {
assert!(args.len() == 1);
// &(&'static str, &'static str, u32, u32)
let place = self.deref_operand(args[0])?;
let (msg, file, line, col) = (
self.mplace_field(place, 0)?,
self.mplace_field(place, 1)?,
self.mplace_field(place, 2)?,
self.mplace_field(place, 3)?,
);
let msg_place = self.deref_operand(msg.into())?;
let msg = Symbol::intern(self.read_str(msg_place)?);
let file_place = self.deref_operand(file.into())?;
let file = Symbol::intern(self.read_str(file_place)?);
let line = self.read_scalar(line.into())?.to_u32()?;
let col = self.read_scalar(col.into())?.to_u32()?;
throw_panic!(Panic { msg, file, line, col })
} else if Some(def_id) == self.tcx.lang_items().begin_panic_fn() {
assert!(args.len() == 2);
// &'static str, &(&'static str, u32, u32)
let msg = args[0];
let place = self.deref_operand(args[1])?;
let (file, line, col) = (
self.mplace_field(place, 0)?,
self.mplace_field(place, 1)?,
self.mplace_field(place, 2)?,
);
let msg_place = self.deref_operand(msg.into())?;
let msg = Symbol::intern(self.read_str(msg_place)?);
let file_place = self.deref_operand(file.into())?;
let file = Symbol::intern(self.read_str(file_place)?);
let line = self.read_scalar(line.into())?.to_u32()?;
let col = self.read_scalar(col.into())?.to_u32()?;
throw_panic!(Panic { msg, file, line, col })
} else {
return Ok(false);
}
}
pub fn exact_div(
&mut self,
a: ImmTy<'tcx, M::PointerTag>,
b: ImmTy<'tcx, M::PointerTag>,
dest: PlaceTy<'tcx, M::PointerTag>,
) -> InterpResult<'tcx> {
// Performs an exact division, resulting in undefined behavior where
// `x % y != 0` or `y == 0` or `x == T::min_value() && y == -1`.
// First, check x % y != 0.
if self.binary_op(BinOp::Rem, a, b)?.to_bits()? != 0 {
// Then, check if `b` is -1, which is the "min_value / -1" case.
let minus1 = Scalar::from_int(-1, dest.layout.size);
let b = b.to_scalar().unwrap();
if b == minus1 {
throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
} else {
throw_ub_format!(
"exact_div: {} cannot be divided by {} without remainder",
a.to_scalar().unwrap(),
b,
)
}
}
self.binop_ignore_overflow(BinOp::Div, a, b, dest)
}
}