|
| 1 | +# Objects365 Dataset |
| 2 | + |
| 3 | +> [Objects365 Dataset](https://openaccess.thecvf.com/content_ICCV_2019/papers/Shao_Objects365_A_Large-Scale_High-Quality_Dataset_for_Object_Detection_ICCV_2019_paper.pdf) |
| 4 | +
|
| 5 | +<!-- [DATASET] --> |
| 6 | + |
| 7 | +## Abstract |
| 8 | + |
| 9 | +<!-- [ABSTRACT] --> |
| 10 | + |
| 11 | +#### Objects365 Dataset V1 |
| 12 | + |
| 13 | +[Objects365 Dataset V1](http://www.objects365.org/overview.html) is a brand new dataset, |
| 14 | +designed to spur object detection research with a focus on diverse objects in the Wild. |
| 15 | +It has 365 object categories over 600K training images. More than 10 million, high-quality bounding boxes are manually labeled through a three-step, carefully designed annotation pipeline. It is the largest object detection dataset (with full annotation) so far and establishes a more challenging benchmark for the community. Objects365 can serve as a better feature learning dataset for localization-sensitive tasks like object detection |
| 16 | +and semantic segmentation. |
| 17 | + |
| 18 | +<!-- [IMAGE] --> |
| 19 | + |
| 20 | +<div align=center> |
| 21 | +<img src="https://user-images.githubusercontent.com/48282753/208368046-b7573022-06c9-4a99-af17-a6ac7407e3d8.png" height="400"/> |
| 22 | +</div> |
| 23 | + |
| 24 | +#### Objects365 Dataset V2 |
| 25 | + |
| 26 | +[Objects365 Dataset V2](http://www.objects365.org/overview.html) is based on the V1 release of the Objects365 dataset. |
| 27 | +Objects 365 annotated 365 object classes on more than 1800k images, with more than 29 million bounding boxes in the training set, surpassing PASCAL VOC, ImageNet, and COCO datasets. |
| 28 | +Objects 365 includes 11 categories of people, clothing, living room, bathroom, kitchen, office/medical, electrical appliances, transportation, food, animals, sports/musical instruments, and each category has dozens of subcategories. |
| 29 | + |
| 30 | +## Citation |
| 31 | + |
| 32 | +``` |
| 33 | +@inproceedings{shao2019objects365, |
| 34 | + title={Objects365: A large-scale, high-quality dataset for object detection}, |
| 35 | + author={Shao, Shuai and Li, Zeming and Zhang, Tianyuan and Peng, Chao and Yu, Gang and Zhang, Xiangyu and Li, Jing and Sun, Jian}, |
| 36 | + booktitle={Proceedings of the IEEE/CVF international conference on computer vision}, |
| 37 | + pages={8430--8439}, |
| 38 | + year={2019} |
| 39 | +} |
| 40 | +``` |
| 41 | + |
| 42 | +## Prepare Dataset |
| 43 | + |
| 44 | +1. You need to download and extract Objects365 dataset. Users can download Objects365 V2 by using `tools/misc/download_dataset.py`. |
| 45 | + |
| 46 | + **Usage** |
| 47 | + |
| 48 | + ```shell |
| 49 | + python tools/misc/download_dataset.py --dataset-name objects365v2 \ |
| 50 | + --save-dir ${SAVING PATH} \ |
| 51 | + --unzip \ |
| 52 | + --delete # Optional, delete the download zip file |
| 53 | + ``` |
| 54 | + |
| 55 | + **Note:** There is no download link for Objects365 V1 right now. If you would like to download Objects365-V1, please visit [official website](http://www.objects365.org/) to concat the author. |
| 56 | + |
| 57 | +2. The directory should be like this: |
| 58 | + |
| 59 | + ```none |
| 60 | + mmdetection |
| 61 | + ├── mmdet |
| 62 | + ├── tools |
| 63 | + ├── configs |
| 64 | + ├── data |
| 65 | + │ ├── Objects365 |
| 66 | + │ │ ├── Obj365_v1 |
| 67 | + │ │ │ ├── annotations |
| 68 | + │ │ │ │ ├── objects365_train.json |
| 69 | + │ │ │ │ ├── objects365_val.json |
| 70 | + │ │ │ ├── train # training images |
| 71 | + │ │ │ ├── val # validation images |
| 72 | + │ │ ├── Obj365_v2 |
| 73 | + │ │ │ ├── annotations |
| 74 | + │ │ │ │ ├── zhiyuan_objv2_train.json |
| 75 | + │ │ │ │ ├── zhiyuan_objv2_val.json |
| 76 | + │ │ │ ├── train # training images |
| 77 | + │ │ │ │ ├── patch0 |
| 78 | + │ │ │ │ ├── patch1 |
| 79 | + │ │ │ │ ├── ... |
| 80 | + │ │ │ ├── val # validation images |
| 81 | + │ │ │ │ ├── patch0 |
| 82 | + │ │ │ │ ├── patch1 |
| 83 | + │ │ │ │ ├── ... |
| 84 | + ``` |
| 85 | + |
| 86 | +## Results and Models |
| 87 | + |
| 88 | +### Objects365 V1 |
| 89 | + |
| 90 | +| Architecture | Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download | |
| 91 | +| :----------: | :------: | :-----: | :-----: | :------: | :----: | :-----------------------------------------------------------------------------------------------------------------------------: | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | |
| 92 | +| Faster R-CNN | R-50 | pytorch | 1x | - | 19.6 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1/faster_rcnn_r50_fpn_16x4_1x_obj365v1_20221219_181226-9ff10f95.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v1/faster_rcnn_r50_fpn_16x4_1x_obj365v1_20221219_181226.log.json) | |
| 93 | +| Faster R-CNN | R-50 | pytorch | 1350K | - | 22.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1_20220510_142457-337d8965.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1/faster_rcnn_r50_fpn_syncbn_1350k_obj365v1_20220510_142457.log.json) | |
| 94 | +| Retinanet | R-50 | pytorch | 1x | - | 14.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/retinanet_r50_fpn_1x_obj365v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v1/retinanet_r50_fpn_1x_obj365v1_20221219_181859-ba3e3dd5.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v1/retinanet_r50_fpn_1x_obj365v1_20221219_181859.log.json) | |
| 95 | +| Retinanet | R-50 | pytorch | 1350K | - | 18.0 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1/retinanet_r50_fpn_syncbn_1350k_obj365v1_20220513_111237-7517c576.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_syncbn_1350k_obj365v1/retinanet_r50_fpn_syncbn_1350k_obj365v1_20220513_111237.log.json) | |
| 96 | + |
| 97 | +### Objects365 V2 |
| 98 | + |
| 99 | +| Architecture | Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download | |
| 100 | +| :----------: | :------: | :-----: | :-----: | :------: | :----: | :------------------------------------------------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | |
| 101 | +| Faster R-CNN | R-50 | pytorch | 1x | - | 19.8 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2/faster_rcnn_r50_fpn_16x4_1x_obj365v2_20221220_175040-5910b015.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/faster_rcnn_r50_fpn_16x4_1x_obj365v2/faster_rcnn_r50_fpn_16x4_1x_obj365v2_20221220_175040.log.json) | |
| 102 | +| Retinanet | R-50 | pytorch | 1x | - | 16.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/objects365/retinanet_r50_fpn_1x_obj365v2.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v2/retinanet_r50_fpn_1x_obj365v2_20221223_122105-d9b191f1.pth) \| [log](https://download.openmmlab.com/mmdetection/v2.0/objects365/retinanet_r50_fpn_1x_obj365v2/retinanet_r50_fpn_1x_obj365v2_20221223_122105.log.json) | |
0 commit comments