forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvtkCubicLine.cxx
494 lines (397 loc) · 13.9 KB
/
vtkCubicLine.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
/*=========================================================================
Program: Visualization Toolkit
Module: vtkCubicLine.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkCubicLine.h"
#include "vtkNonLinearCell.h"
#include "vtkCellArray.h"
#include "vtkCellData.h"
#include "vtkCell.h"
#include "vtkMath.h"
#include "vtkObjectFactory.h"
#include "vtkIncrementalPointLocator.h"
#include "vtkLine.h"
#include "vtkDoubleArray.h"
#include "vtkPoints.h"
#include "vtkPointData.h"
vtkStandardNewMacro(vtkCubicLine);
//----------------------------------------------------------------------------
// Construct the line with four points.
vtkCubicLine::vtkCubicLine()
{
this->Scalars = vtkDoubleArray::New();
this->Scalars->SetNumberOfTuples(4);
this->Points->SetNumberOfPoints(4);
this->PointIds->SetNumberOfIds(4);
for (int i = 0; i < 4; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
this->Line = vtkLine::New();
}
//----------------------------------------------------------------------------
// Delete the Line
vtkCubicLine::~vtkCubicLine()
{
this->Line->Delete();
this->Scalars->Delete();
}
//----------------------------------------------------------------------------
static const int VTK_NO_INTERSECTION=0;
static const int VTK_YES_INTERSECTION=2;
static const int VTK_ON_LINE=3;
int vtkCubicLine::EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& minDist2, double *weights)
{
double closest[3];
double pc[3], dist2;
int ignoreId, i, returnStatus, status;
double lineWeights[2];
pcoords[1] = pcoords[2] = 0.0;
returnStatus = -1;
weights[0] = 0.0;
for (minDist2=VTK_DOUBLE_MAX,i=0; i < 3; i++)
{
if ( i == 0)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(0));
this->Line->Points->SetPoint(1,this->Points->GetPoint(2));
}
else if (i == 1)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(2));
this->Line->Points->SetPoint(1,this->Points->GetPoint(3));
}
else
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(3));
this->Line->Points->SetPoint(1,this->Points->GetPoint(1));
}
status = this->Line->EvaluatePosition(x,closest,ignoreId,pc,
dist2,lineWeights);
if ( status != -1 && dist2 < minDist2 )
{
returnStatus = status;
minDist2 = dist2;
subId = i;
pcoords[0] = pc[0];
}
}
// adjust parametric coordinate
if ( returnStatus != -1 )
{
if ( subId == 0 ) //first part : -1 <= pcoords <= -1/3
{
pcoords[0] = pcoords[0]*(2.0/3.0) - 1;
}
else if ( subId == 1 ) //second part : -1/3 <= pcoords <= 1/3
{
pcoords[0] = pcoords[0]*(2.0/3.0) -(1.0/3.0) ;
}
else // third part : 1/3 <= pcoords <= 1
{
pcoords[0] = pcoords[0]*(2.0/3.0) + (1.0/3.0);
}
if(closestPoint!=0)
{
// Compute both closestPoint and weights
this->EvaluateLocation(subId,pcoords,closestPoint,weights);
}
else
{
// Compute weights only
this->InterpolationFunctions(pcoords,weights);
}
}
return returnStatus;
}
//----------------------------------------------------------------------------
void vtkCubicLine::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3],
double x[3], double *weights)
{
int i;
double a0[3], a1[3], a2[3], a3[3];
this->Points->GetPoint(0, a0);
this->Points->GetPoint(1, a1);
this->Points->GetPoint(2, a2); //first midside node
this->Points->GetPoint(3, a3); //second midside node
this->InterpolationFunctions(pcoords,weights);
for (i=0; i<3; i++)
{
x[i] = a0[i]*weights[0] + a1[i]*weights[1] + a2[i]*weights[2] + a3[i]*weights[3];
}
}
//----------------------------------------------------------------------------
int vtkCubicLine::CellBoundary(int vtkNotUsed(subId), double pcoords[3],
vtkIdList *pts)
{
pts->SetNumberOfIds(1);
if ( pcoords[0] >= 0.0 )
{
pts->SetId(0,this->PointIds->GetId(1)); // The edge points IDs are 0 and 1.
if ( pcoords[0] > 1.0 )
{
return 0;
}
else
{
return 1;
}
}
else
{
pts->SetId(0,this->PointIds->GetId(0));
if ( pcoords[0] < -1.0 )
{
return 0;
}
else
{
return 1;
}
}
}
//LinearLines for the Contour and the Clip Algorithm
//-----------------------------------------------------------------------------
static int LinearLines[3][2] = { {0,2}, {2,3}, {3,1} };
void vtkCubicLine::Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId,
vtkCellData *outCd)
{
for (int i=0; i < 3; i++) //for each subdivided line
{
for ( int j=0; j<2; j++) //for each of the four vertices of the line
{
this->Line->Points->SetPoint(j,this->Points->GetPoint(LinearLines[i][j]));
this->Line->PointIds->SetId(j,this->PointIds->GetId(LinearLines[i][j]));
this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearLines[i][j]));
}
this->Line->Contour(value, this->Scalars, locator, verts,
lines, polys, inPd, outPd, inCd, cellId, outCd);
}
}
//----------------------------------------------------------------------------
// Line-line intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
int vtkCubicLine::IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId)
{
int subTest, numLines=3;
for (subId=0; subId < numLines; subId++)
{
if ( subId == 0)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(0));
this->Line->Points->SetPoint(1,this->Points->GetPoint(2));
}
else if (subId == 1)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(2));
this->Line->Points->SetPoint(1,this->Points->GetPoint(3));
}
else
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(3));
this->Line->Points->SetPoint(1,this->Points->GetPoint(1));
}
if ( this->Line->IntersectWithLine(p1, p2, tol, t, x, pcoords, subTest) )
{
// adjust parametric coordinate
if ( subId == 0 ) //first part : -1 <= pcoords <= -1/3
{
pcoords[0] = pcoords[0]*(2.0/3.0) - 1;
}
else if ( subId == 1 ) //second part : -1/3 <= pcoords <= 1/3
{
pcoords[0] = pcoords[0]*(2.0/3.0) - (1.0/3.0) ;
}
else // third part : 1/3 <= pcoords <= 1
{
pcoords[0] = pcoords[0]*(2.0/3.0) + (1.0/3.0);
}
return 1;
}
}
return 0;
}
//----------------------------------------------------------------------------
int vtkCubicLine::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds,
vtkPoints *pts)
{
pts->Reset();
ptIds->Reset();
// The first line
ptIds->InsertId(0,this->PointIds->GetId(0));
pts->InsertPoint(0,this->Points->GetPoint(0));
ptIds->InsertId(1,this->PointIds->GetId(2));
pts->InsertPoint(1,this->Points->GetPoint(2));
// The second line
ptIds->InsertId(2,this->PointIds->GetId(2));
pts->InsertPoint(2,this->Points->GetPoint(2));
ptIds->InsertId(3,this->PointIds->GetId(3));
pts->InsertPoint(3,this->Points->GetPoint(3));
// The third line
ptIds->InsertId(4,this->PointIds->GetId(3));
pts->InsertPoint(4,this->Points->GetPoint(3));
ptIds->InsertId(5,this->PointIds->GetId(1));
pts->InsertPoint(5,this->Points->GetPoint(1));
return 1;
}
//----------------------------------------------------------------------------
void vtkCubicLine::Derivatives(int vtkNotUsed(subId),
double pcoords[3],
double *values,
int dim,
double *derivs)
{
double v0, v1, v2, v3; // Local coordinates of Each point.
double v10[3], lenX; // Reesentation of local Axis
double x0[3], x1[3], x2[3], x3[3]; // Points of the model
double vec20[3], vec30[3]; // Normal and vector of each point.
double J; // Jacobian Matrix
double JI; // Inverse of the Jacobian Matrix
double funcDerivs[4], sum, dBydx; // Derivated values
// Project points of vtkCubicLine into a 1D system
this->Points->GetPoint(0, x0);
this->Points->GetPoint(1, x1);
this->Points->GetPoint(2, x2);
this->Points->GetPoint(3, x3);
for (int i=0; i < 3; i++) // Compute the vector for each point
{
v10[i] = x1[i] - x0[i];
vec20[i] = x2[i] - x0[i];
vec30[i] = x3[i] - x0[i];
}
if ( (lenX=vtkMath::Normalize(v10)) <= 0.0 ) //degenerate
{
for (int j=0; j < dim; j++ )
{
for (int i=0; i < 3; i++ )
{
derivs[j*dim + i] = 0.0;
}
}
return;
}
v0 = 0.0; //convert points to 1D (i.e., local system)
v1 = lenX;
v2 = vtkMath::Dot(vec20,v10);
v3 = vtkMath::Dot(vec30,v10);
this->InterpolationDerivs(pcoords, funcDerivs);
J = v0*funcDerivs[0] + v1*funcDerivs[1] +
v2*funcDerivs[2] + v3*funcDerivs[3];
// Compute inverse Jacobian, return if Jacobian is singular
if(J != 0)
{
JI = 1.0 / J;
}
else
{
for (int j=0; j < dim; j++ )
{
for (int i=0; i < 3; i++ )
{
derivs[j*dim + i] = 0.0;
}
}
return;
}
// Loop over "dim" derivative values. For each set of values,
// compute derivatives
// in local system and then transform into modelling system.
// First compute derivatives in local x' coordinate system
for (int j=0; j < dim; j++ )
{
sum = 0.0;
for (int i=0; i < 4; i++) //loop over interp. function derivatives
{
sum += funcDerivs[i] * values[dim*i + j];
}
dBydx = sum*JI;
// Transform into global system (dot product with global axes)
derivs[3*j] = dBydx * v10[0] ;
derivs[3*j + 1] = dBydx * v10[1] ;
derivs[3*j + 2] = dBydx * v10[2] ;
}
}
//--------------------------------------------------------------------------
// Clip this line using scalar value provided. Like contouring, except
// that it cuts the line to produce other lines.
void vtkCubicLine::Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *lines,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut)
{
for (int i=0; i < 3; i++) //for each subdivided line
{
for ( int j=0; j<2; j++) //for each of the four vertices of the line
{
this->Line->Points->SetPoint(j,this->Points->GetPoint(LinearLines[i][j]));
this->Line->PointIds->SetId(j,this->PointIds->GetId(LinearLines[i][j]));
this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearLines[i][j]));
}
this->Line->Clip(value, this->Scalars, locator, lines, inPd, outPd,
inCd, cellId, outCd, insideOut);
}
}
//----------------------------------------------------------------------------
//
// Compute interpolation functions
//
void vtkCubicLine::InterpolationFunctions(double pcoords[3], double weights[4]) // N2 and N3 are the middle points
{
// pcoords[0] = t, weights need to be set in accordance with the definition of the standard cubic line finite element
double t = pcoords[0];
weights[0] = (9.0/16.0)*(1.0 - t)*(t + (1.0/3.0))*(t - (1.0/3.0));
weights[1] = (-9.0/16.0)*(1.0 + t)*((1.0/3.0) - t)*(t + (1.0/3.0));
weights[2] = (27.0/16.0)*(t - 1.0)*(t + 1.0)*(t - (1.0/3.0));
weights[3] = (-27.0/16.0)*(t - 1.0)*(t + 1.0)*(t + (1.0/3.0));
}
//----------------------------------------------------------------------------
void vtkCubicLine::InterpolationDerivs(double pcoords[3], double derivs[4]) //N2 and N3 are the middle points
{
double t = pcoords[0];
derivs[0] = (1.0/16.0)*(1.0 + 18.0*t - 27.0*t*t);
derivs[1] = (1.0/16.0)*(-1.0 + 18.0*t + 27.0*t*t);
derivs[2] = (1.0/16.0)*(-27.0 - 18.0*t + 81.0*t*t);
derivs[3] = (1.0/16.0)*(27.0 - 18.0*t - 81.0*t*t);
}
//----------------------------------------------------------------------------
static double vtkCubicLineCellPCoords[12] = {-1.0,0.0,0.0, 1.0,0.0,0.0, -(1.0/3.0),0.0,0.0, (1.0/3.0),0.0,0.0};
double *vtkCubicLine::GetParametricCoords()
{
return vtkCubicLineCellPCoords;
}
//----------------------------------------------------------------------------
double vtkCubicLine::GetParametricDistance(double pcoords[3])
{
double pc;
pc = pcoords[0];
if ( pc <= -1.0)
{
return pc * (-1.0) - 1.0;
}
else if (pc >= 1.0)
{
return pc - 1.0;
}
return pc; // the parametric coordintate lies between -1.0 and 1.0.
}
//----------------------------------------------------------------------------
void vtkCubicLine::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Line: " << this->Line << endl;
}