forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvtkMeanValueCoordinatesInterpolator.h
100 lines (82 loc) · 4.24 KB
/
vtkMeanValueCoordinatesInterpolator.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/*=========================================================================
Program: Visualization Toolkit
Module: vtkMeanValueCoordinatesInterpolator.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkMeanValueCoordinatesInterpolator - compute interpolation computes
// for closed triangular mesh
// .SECTION Description
// vtkMeanValueCoordinatesInterpolator computes interpolation weights for a
// closed, manifold polyhedron mesh. Once computed, the interpolation
// weights can be used to interpolate data anywhere interior or exterior to
// the mesh. This work implements two MVC algorithms. The first one is for
// triangular meshes which is documented in the Siggraph 2005 paper by Tao Ju,
// Scot Schaefer and Joe Warren from Rice University "Mean Value Coordinates
// for Closed Triangular Meshes". The second one is for general polyhedron
// mesh which is documented in the Eurographics Symposium on Geometry Processing
// 2006 paper by Torsten Langer, Alexander Belyaev and Hans-Peter Seidel from
// MPI Informatik "Spherical Barycentric Coordinates".
// The filter will automatically choose which algorithm to use based on whether
// the input mesh is triangulated or not.
//
// In VTK this class was initially created to interpolate data across
// polyhedral cells. In addition, the class can be used to interpolate
// data values from a polyhedron mesh, and to smoothly deform a mesh from
// an associated control mesh.
// .SECTION See Also
// vtkPolyhedralCell
#ifndef __vtkMeanValueCoordinatesInterpolator_h
#define __vtkMeanValueCoordinatesInterpolator_h
#include "vtkObject.h"
class vtkPoints;
class vtkIdList;
class vtkCellArray;
class vtkDataArray;
//Special internal class for iterating over data
class vtkMVCTriIterator;
class vtkMVCPolyIterator;
class VTK_FILTERING_EXPORT vtkMeanValueCoordinatesInterpolator : public vtkObject
{
public:
// Description
// Standard instantiable class methods.
static vtkMeanValueCoordinatesInterpolator *New();
vtkTypeMacro(vtkMeanValueCoordinatesInterpolator,vtkObject);
void PrintSelf(ostream& os, vtkIndent indent);
// Description:
// Method to generate interpolation weights for a point x[3] from a list of
// triangles. In this version of the method, the triangles are defined by
// a vtkPoints array plus a vtkIdList, where the vtkIdList is organized
// such that three ids in order define a triangle. Note that number of weights
// must equal the number of points.
static void ComputeInterpolationWeights(double x[3], vtkPoints *pts,
vtkIdList *tris, double *weights);
// Description:
// Method to generate interpolation weights for a point x[3] from a list of
// polygonal faces. In this version of the method, the faces are defined by
// a vtkPoints array plus a vtkCellArray, where the vtkCellArray contains all
// faces and is of format [nFace0Pts, pid1, pid2, pid3,..., nFace1Pts, pid1,
// pid2, pid3,...]. Note: the number of weights must equal the number of points.
static void ComputeInterpolationWeights(double x[3], vtkPoints *pts,
vtkCellArray *tris, double *weights);
protected:
vtkMeanValueCoordinatesInterpolator();
~vtkMeanValueCoordinatesInterpolator();
// Description:
// Internal method that sets up the processing of triangular meshes.
static void ComputeInterpolationWeightsForTriangleMesh(
double x[3], vtkPoints *pts, vtkMVCTriIterator& iter, double *weights);
// Description:
// Internal method that sets up the processing of general polyhedron meshes.
static void ComputeInterpolationWeightsForPolygonMesh(
double x[3], vtkPoints *pts, vtkMVCPolyIterator& iter, double *weights);
private:
vtkMeanValueCoordinatesInterpolator(const vtkMeanValueCoordinatesInterpolator&); // Not implemented.
void operator=(const vtkMeanValueCoordinatesInterpolator&); // Not implemented.
};
#endif