forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvtkPerlinNoise.cxx
145 lines (116 loc) · 3.83 KB
/
vtkPerlinNoise.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*=========================================================================
Program: Visualization Toolkit
Module: vtkPerlinNoise.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkPerlinNoise.h"
#include "vtkObjectFactory.h"
#include <math.h>
vtkStandardNewMacro(vtkPerlinNoise);
// These functions are from Greg Ward's recursive implementation in
// Graphics Gems II. I've kept the names the same for instructional
// purposes, and only changed things where optimizations could be made.
static double hermite(double p0, double p1,
double r0, double r1, double t)
{
double tt = t*t;
return (p0*((2.0*t - 3.0)*tt + 1.0) +
p1*(-2.0*t + 3.0)*tt +
r0*((t-2.0)*t+1.0)*t +
r1*(t-1.0)*tt);
}
// assumes 32 bit ints, but so it seems does VTK
static double frand(int s)
{
s = (s<<13) ^ s;
s = (s*(s*s*15731 + 789221)+1376312589)&VTK_INT_MAX;
return 1.0 - double(s)/(VTK_INT_MAX/2 + 1);
}
static void rand3abcd(int x, int y, int z, double outv[4])
{
outv[0] = frand(67*x + 59*y + 71*z);
outv[1] = frand(73*x + 79*y + 83*z);
outv[2] = frand(89*x + 97*y + 101*z);
outv[3] = frand(103*x + 107*y + 109*z);
}
static void interpolate(double f[4], int i, int n,
int xlim[3][2], double xarg[2])
{
double f0[4], f1[4];
if (n == 0)
{
rand3abcd(xlim[0][i&1], xlim[1][(i>>1) & 1], xlim[2][i>>2], f);
return;
}
n--;
interpolate(f0, i, n, xlim, xarg);
interpolate(f1, i | (1<<n), n, xlim, xarg);
f[0] = (1.0 - xarg[n])*f0[0] + xarg[n]*f1[0];
f[1] = (1.0 - xarg[n])*f0[1] + xarg[n]*f1[1];
f[2] = (1.0 - xarg[n])*f0[2] + xarg[n]*f1[2];
f[3] = hermite(f0[3], f1[3], f0[n], f1[n], xarg[n]);
}
static void perlinNoise(double x[3], double noise[4])
{
double xarg[3];
int xlim[3][2];
xlim[0][0] = int(floor(x[0]));
xlim[1][0] = int(floor(x[1]));
xlim[2][0] = int(floor(x[2]));
xlim[0][1] = xlim[0][0] + 1;
xlim[1][1] = xlim[1][0] + 1;
xlim[2][1] = xlim[2][0] + 1;
xarg[0] = x[0] - xlim[0][0];
xarg[1] = x[1] - xlim[1][0];
xarg[2] = x[2] - xlim[2][0];
interpolate(noise, 0, 3, xlim, xarg);
}
vtkPerlinNoise::vtkPerlinNoise()
{
this->Frequency[0] = 1.0;
this->Frequency[1] = 1.0;
this->Frequency[2] = 1.0;
this->Phase[0] = 0.0;
this->Phase[1] = 0.0;
this->Phase[2] = 0.0;
this->Amplitude = 1.0;
}
double vtkPerlinNoise::EvaluateFunction(double x[3])
{
double xd[3];
double noise[4];
xd[0] = x[0]*this->Frequency[0] - this->Phase[0]*2.0;
xd[1] = x[1]*this->Frequency[1] - this->Phase[1]*2.0;
xd[2] = x[2]*this->Frequency[2] - this->Phase[2]*2.0;
perlinNoise(xd, noise);
return noise[3]*this->Amplitude;
}
// Evaluate PerlinNoise gradient.
void vtkPerlinNoise::EvaluateGradient(double* vtkNotUsed(x), // Was x[3]
double n[3])
{
// contrary to the paper, the vector computed as a byproduct of
// the Perlin Noise computation isn't a gradient; it's a tangent.
// Doing this right will take some work.
n[0] = 0.0;
n[1] = 0.0;
n[2] = 0.0;
}
void vtkPerlinNoise::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Amplitude: " << this->Amplitude << "\n";
os << indent << "Frequency: ("
<< this->Frequency[0] << ", "
<< this->Frequency[1] << ", "
<< this->Frequency[2] << ")\n";
os << indent << "Phase: ("
<< this->Phase[0] << ", "
<< this->Phase[1] << ", "
<< this->Phase[2] << ")\n";
}