forked from Kitware/VTK
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvtkQuadraticEdge.cxx
354 lines (305 loc) · 11.3 KB
/
vtkQuadraticEdge.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
/*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticEdge.cxx
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkQuadraticEdge.h"
#include "vtkObjectFactory.h"
#include "vtkMath.h"
#include "vtkLine.h"
#include "vtkDoubleArray.h"
#include "vtkPoints.h"
vtkStandardNewMacro(vtkQuadraticEdge);
//----------------------------------------------------------------------------
// Construct the line with two points.
vtkQuadraticEdge::vtkQuadraticEdge()
{
this->Scalars = vtkDoubleArray::New();
this->Scalars->SetNumberOfTuples(2);
this->Points->SetNumberOfPoints(3);
this->PointIds->SetNumberOfIds(3);
for (int i = 0; i < 3; i++)
{
this->Points->SetPoint(i, 0.0, 0.0, 0.0);
this->PointIds->SetId(i,0);
}
this->Line = vtkLine::New();
}
//----------------------------------------------------------------------------
vtkQuadraticEdge::~vtkQuadraticEdge()
{
this->Line->Delete();
this->Scalars->Delete();
}
//----------------------------------------------------------------------------
int vtkQuadraticEdge::EvaluatePosition(double* x, double* closestPoint,
int& subId, double pcoords[3],
double& minDist2, double *weights)
{
double closest[3];
double pc[3], dist2;
int ignoreId, i, returnStatus, status;
double lineWeights[2];
pcoords[1] = pcoords[2] = 0.0;
returnStatus = -1;
weights[0] = 0.0;
for (minDist2=VTK_DOUBLE_MAX,i=0; i < 2; i++)
{
if ( i == 0)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(0));
this->Line->Points->SetPoint(1,this->Points->GetPoint(2));
}
else
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(2));
this->Line->Points->SetPoint(1,this->Points->GetPoint(1));
}
status = this->Line->EvaluatePosition(x,closest,ignoreId,pc,
dist2,lineWeights);
if ( status != -1 && dist2 < minDist2 )
{
returnStatus = status;
minDist2 = dist2;
subId = i;
pcoords[0] = pc[0];
}
}
// adjust parametric coordinate
if ( returnStatus != -1 )
{
if ( subId == 0 ) //first part
{
pcoords[0] = pcoords[0]/2.0;
}
else
{
pcoords[0] = 0.5 + pcoords[0]/2.0;
}
if(closestPoint!=0)
{
// Compute both closestPoint and weights
this->EvaluateLocation(subId,pcoords,closestPoint,weights);
}
else
{
// Compute weights only
this->InterpolationFunctions(pcoords,weights);
}
}
return returnStatus;
}
//----------------------------------------------------------------------------
void vtkQuadraticEdge::EvaluateLocation(int& vtkNotUsed(subId),
double pcoords[3],
double x[3], double *weights)
{
int i;
double a0[3], a1[3], a2[3];
this->Points->GetPoint(0, a0);
this->Points->GetPoint(1, a1);
this->Points->GetPoint(2, a2); //midside node
this->InterpolationFunctions(pcoords,weights);
for (i=0; i<3; i++)
{
x[i] = a0[i]*weights[0] + a1[i]*weights[1] + a2[i]*weights[2];
}
}
//----------------------------------------------------------------------------
int vtkQuadraticEdge::CellBoundary(int subId, double pcoords[3],
vtkIdList *pts)
{
return this->Line->CellBoundary(subId, pcoords, pts);
}
//----------------------------------------------------------------------------
static int LinearLines[2][2] = { {0,2}, {2,1} };
void vtkQuadraticEdge::Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId,
vtkCellData *outCd)
{
for (int i=0; i < 2; i++) //for each subdivided line
{
for ( int j=0; j<2; j++) //for each of the four vertices of the line
{
this->Line->Points->SetPoint(j,this->Points->GetPoint(LinearLines[i][j]));
this->Line->PointIds->SetId(j,this->PointIds->GetId(LinearLines[i][j]));
this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearLines[i][j]));
}
this->Line->Contour(value, this->Scalars, locator, verts,
lines, polys, inPd, outPd, inCd, cellId, outCd);
}
}
//----------------------------------------------------------------------------
// Line-line intersection. Intersection has to occur within [0,1] parametric
// coordinates and with specified tolerance.
// The following arguments were modified to avoid warnings:
// double p1[3], double p2[3], double x[3], double pcoords[3],
int vtkQuadraticEdge::IntersectWithLine(double p1[3], double p2[3],
double tol, double& t,
double x[3], double pcoords[3],
int& subId)
{
int subTest, numLines=2;
for (subId=0; subId < numLines; subId++)
{
if ( subId == 0)
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(0));
this->Line->Points->SetPoint(1,this->Points->GetPoint(2));
}
else
{
this->Line->Points->SetPoint(0,this->Points->GetPoint(2));
this->Line->Points->SetPoint(1,this->Points->GetPoint(1));
}
if ( this->Line->IntersectWithLine(p1, p2, tol, t, x, pcoords, subTest) )
{
return 1;
}
}
return 0;
}
//----------------------------------------------------------------------------
int vtkQuadraticEdge::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds,
vtkPoints *pts)
{
pts->Reset();
ptIds->Reset();
// The first line
ptIds->InsertId(0,this->PointIds->GetId(0));
pts->InsertPoint(0,this->Points->GetPoint(0));
ptIds->InsertId(1,this->PointIds->GetId(2));
pts->InsertPoint(1,this->Points->GetPoint(2));
// The second line
ptIds->InsertId(2,this->PointIds->GetId(2));
pts->InsertPoint(2,this->Points->GetPoint(2));
ptIds->InsertId(3,this->PointIds->GetId(1));
pts->InsertPoint(3,this->Points->GetPoint(1));
return 1;
}
//----------------------------------------------------------------------------
void vtkQuadraticEdge::Derivatives(int vtkNotUsed(subId),
double pcoords[3], double *values,
int dim, double *derivs)
{
double x0[3], x1[3], x2[3];
this->Points->GetPoint(0, x0);
this->Points->GetPoint(1, x1);
this->Points->GetPoint(2, x2); //midside node
// set up Jacobian matrix and inverse matrix
double *jTj[3], jTj0[3], jTj1[3], jTj2[3];
jTj[0] = jTj0; jTj[1] = jTj1; jTj[2] = jTj2;
double *jI[3], jI0[3], jI1[3], jI2[3];
jI[0] = jI0; jI[1] = jI1; jI[2] = jI2;
/*
double *iI[3], iI0[3], iI1[3], iI2[3];
iI[0] = iI0; iI[1] = iI1; iI[2] = iI2;
*/
// Compute dx/dt, dy/dt, dz/dt
this->InterpolationDerivs(pcoords,derivs);
double dxdt = x0[0]*derivs[0] + x1[0]*derivs[1] + x2[0]*derivs[2];
double dydt = x0[1]*derivs[0] + x1[1]*derivs[1] + x2[1]*derivs[2];
double dzdt = x0[2]*derivs[0] + x1[2]*derivs[1] + x2[2]*derivs[2];
// Compute the psuedo inverse (we are dealing with an overconstrained system,
// i.e., a non-square Jacobian matrix). The pseudo inverse is ((jT*j)-1)*jT
// with jT Jacobian transpose, -1 notation means inverse.
// Compute jT * j
jTj[0][0] = dxdt*dxdt;
jTj[0][1] = dxdt*dydt;
jTj[0][2] = dxdt*dzdt;
jTj[1][0] = dydt*dxdt;
jTj[1][1] = dydt*dydt;
jTj[1][2] = dydt*dzdt;
jTj[2][0] = dzdt*dxdt;
jTj[2][1] = dzdt*dydt;
jTj[2][2] = dzdt*dzdt;
// Compute (jT * j) inverse
// now find the inverse
if ( vtkMath::InvertMatrix(jTj,jI,3) == 0 )
{
vtkErrorMacro(<<"Jacobian inverse not found");
return;
}
// Multiply inverse by transpose (jT * j) * jT to yield pseudo inverse.
// Here the pseudo inverse is a 3x1 matrix.
double inv[3];
inv[0] = jI[0][0]*dxdt + jI[0][1]*dydt + jI[0][2]*dzdt;
inv[1] = jI[1][0]*dxdt + jI[1][1]*dydt + jI[1][2]*dzdt;
inv[2] = jI[2][0]*dxdt + jI[2][1]*dydt + jI[2][2]*dzdt;
//now compute the derivates of the data values
double sum;
int i, j, k;
for (k=0; k<dim; k++)
{
sum = 0.0;
for ( i=0; i < 3; i++) //loop over interp. function derivatives
{
sum += derivs[i] * values[dim*i + k];
}
for (j=0; j < 3; j++) //loop over derivative directions
{
derivs[3*k + j] = sum*inv[j];
}
}
}
//----------------------------------------------------------------------------
// Clip this quadratic edge using scalar value provided. Like contouring,
// except that it cuts the edge to produce linear line segments.
void vtkQuadraticEdge::Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *lines,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId,
vtkCellData *outCd, int insideOut)
{
for (int i=0; i < 2; i++) //for each subdivided line
{
for ( int j=0; j<2; j++) //for each of the four vertices of the line
{
this->Line->Points->SetPoint(j,this->Points->GetPoint(LinearLines[i][j]));
this->Line->PointIds->SetId(j,this->PointIds->GetId(LinearLines[i][j]));
this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearLines[i][j]));
}
this->Line->Clip(value, this->Scalars, locator, lines, inPd, outPd,
inCd, cellId, outCd, insideOut);
}
}
//----------------------------------------------------------------------------
// Compute interpolation functions. Node [2] is the mid-edge node.
void vtkQuadraticEdge::InterpolationFunctions(double pcoords[3],
double weights[3])
{
double r = pcoords[0];
weights[0] = 2.0 * (r - 0.5) * (r - 1.0);
weights[1] = 2.0 * r * (r - 0.5);
weights[2] = 4.0 * r * (1.0 - r);
}
//----------------------------------------------------------------------------
// Derivatives in parametric space.
void vtkQuadraticEdge::InterpolationDerivs(double pcoords[3], double derivs[3])
{
double r = pcoords[0];
derivs[0] = 4.0 * r - 3.0;
derivs[1] = 4.0 * r - 1.0;
derivs[2] = 4.0 - r * 8.0;
}
//----------------------------------------------------------------------------
static double vtkQEdgeCellPCoords[9] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.5,0.0,0.0};
double *vtkQuadraticEdge::GetParametricCoords()
{
return vtkQEdgeCellPCoords;
}
//----------------------------------------------------------------------------
void vtkQuadraticEdge::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
os << indent << "Line:\n";
this->Line->PrintSelf(os,indent.GetNextIndent());
}