-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathProgram.cs
97 lines (81 loc) · 3.05 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
using System.Net.Http.Json;
using System.Text;
using System.Text.Json;
class ApiResponse
{
public required ApiObject[] data { get; set; }
}
class ApiObject
{
public required float[] embedding { get; set; }
}
class Program
{
static async Task Main()
{
var apiKey = Environment.GetEnvironmentVariable("OPENAI_API_KEY");
if (apiKey is null)
throw new Exception("Set OPENAI_API_KEY");
var connString = "Host=localhost;Database=pgvector_example";
var dataSourceBuilder = new NpgsqlDataSourceBuilder(connString);
dataSourceBuilder.UseVector();
await using var dataSource = dataSourceBuilder.Build();
var conn = dataSource.OpenConnection();
await using (var cmd = new NpgsqlCommand("CREATE EXTENSION IF NOT EXISTS vector", conn))
{
await cmd.ExecuteNonQueryAsync();
}
conn.ReloadTypes();
await using (var cmd = new NpgsqlCommand("DROP TABLE IF EXISTS documents", conn))
{
await cmd.ExecuteNonQueryAsync();
}
await using (var cmd = new NpgsqlCommand("CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(1536))", conn))
{
await cmd.ExecuteNonQueryAsync();
}
string[] input = {
"The dog is barking",
"The cat is purring",
"The bear is growling"
};
var embeddings = await Embed(input, apiKey);
for (int i = 0; i < input.Length; i++)
{
await using (var cmd = new NpgsqlCommand("INSERT INTO documents (content, embedding) VALUES ($1, $2)", conn))
{
cmd.Parameters.AddWithValue(input[i]);
cmd.Parameters.AddWithValue(new Vector(embeddings[i]));
await cmd.ExecuteNonQueryAsync();
}
}
var query = "forest";
var queryEmbedding = (await Embed(new string[] { query }, apiKey))[0];
await using (var cmd = new NpgsqlCommand("SELECT content FROM documents ORDER BY embedding <=> $1 LIMIT 5", conn))
{
cmd.Parameters.AddWithValue(new Vector(queryEmbedding));
await using (var reader = await cmd.ExecuteReaderAsync())
{
while (await reader.ReadAsync())
{
Console.WriteLine((string)reader.GetValue(0));
}
}
}
}
private static async Task<float[][]> Embed(string[] input, string apiKey)
{
var url = "https://api.openai.com/v1/embeddings";
var data = new
{
input = input,
model = "text-embedding-3-small"
};
var client = new HttpClient();
client.DefaultRequestHeaders.Add("Authorization", "Bearer " + apiKey);
using HttpResponseMessage response = await client.PostAsJsonAsync(url, data);
response.EnsureSuccessStatusCode();
var apiResponse = await response.Content.ReadFromJsonAsync<ApiResponse>();
return apiResponse!.data.Select(e => e.embedding).ToArray();
}
}