-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathexample.js
37 lines (30 loc) · 1.21 KB
/
example.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import OpenAI from 'openai';
import pg from 'pg';
import pgvector from 'pgvector/pg';
const client = new pg.Client({database: 'pgvector_example'});
await client.connect();
await client.query('CREATE EXTENSION IF NOT EXISTS vector');
await pgvector.registerTypes(client);
await client.query('DROP TABLE IF EXISTS documents');
await client.query('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(1536))');
async function embed(input) {
const openai = new OpenAI();
const response = await openai.embeddings.create({input: input, model: 'text-embedding-3-small'});
return response.data.map((v) => v.embedding);
}
const input = [
'The dog is barking',
'The cat is purring',
'The bear is growling'
];
const embeddings = await embed(input);
for (let [i, content] of input.entries()) {
await client.query('INSERT INTO documents (content, embedding) VALUES ($1, $2)', [content, pgvector.toSql(embeddings[i])]);
}
const query = 'forest';
const queryEmbedding = (await embed([query]))[0];
const { rows } = await client.query('SELECT content FROM documents ORDER BY embedding <=> $1 LIMIT 5', [pgvector.toSql(queryEmbedding)]);
for (let row of rows) {
console.log(row.content);
}
await client.end();