-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathexample.py
34 lines (26 loc) · 1.05 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
from openai import OpenAI
from pgvector.psycopg import register_vector
import psycopg
conn = psycopg.connect(dbname='pgvector_example', autocommit=True)
conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
register_vector(conn)
conn.execute('DROP TABLE IF EXISTS documents')
conn.execute('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(1536))')
def embed(input):
client = OpenAI()
response = client.embeddings.create(input=input, model='text-embedding-3-small')
return [v.embedding for v in response.data]
input = [
'The dog is barking',
'The cat is purring',
'The bear is growling'
]
embeddings = embed(input)
for content, embedding in zip(input, embeddings):
conn.execute('INSERT INTO documents (content, embedding) VALUES (%s, %s)', (content, np.array(embedding)))
query = 'forest'
query_embedding = embed([query])[0]
result = conn.execute('SELECT content FROM documents ORDER BY embedding <=> %s LIMIT 5', (np.array(query_embedding),)).fetchall()
for row in result:
print(row[0])