-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathexample.py
28 lines (22 loc) · 957 Bytes
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from pgvector.psycopg import register_vector
import psycopg
from sentence_transformers import SentenceTransformer
conn = psycopg.connect(dbname='pgvector_example', autocommit=True)
conn.execute('CREATE EXTENSION IF NOT EXISTS vector')
register_vector(conn)
conn.execute('DROP TABLE IF EXISTS documents')
conn.execute('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embedding vector(384))')
model = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
input = [
'The dog is barking',
'The cat is purring',
'The bear is growling'
]
embeddings = model.encode(input)
for content, embedding in zip(input, embeddings):
conn.execute('INSERT INTO documents (content, embedding) VALUES (%s, %s)', (content, embedding))
query = 'forest'
query_embedding = model.encode(query)
result = conn.execute('SELECT content FROM documents ORDER BY embedding <=> %s LIMIT 5', (query_embedding,)).fetchall()
for row in result:
print(row[0])