-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathuser_recs.rb
50 lines (39 loc) · 1.15 KB
/
user_recs.rb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
require "disco"
require "pgvector"
require "sequel"
DB = Sequel.connect("postgres://localhost/pgvector_example")
DB.run "CREATE EXTENSION IF NOT EXISTS vector"
DB.drop_table? :movies
DB.create_table :movies do
primary_key :id
text :name
column :factors, "vector(20)"
end
DB.drop_table? :users
DB.create_table :users do
primary_key :id
column :factors, "vector(20)"
end
class Movie < Sequel::Model
plugin :pgvector, :factors
end
class User < Sequel::Model
plugin :pgvector, :factors
end
data = Disco.load_movielens
recommender = Disco::Recommender.new(factors: 20)
recommender.fit(data)
movies = []
recommender.item_ids.each do |item_id|
movies << {name: item_id, factors: Pgvector.encode(recommender.item_factors(item_id))}
end
Movie.multi_insert(movies)
users = []
recommender.user_ids.each do |user_id|
users << {id: user_id, factors: Pgvector.encode(recommender.user_factors(user_id))}
end
User.multi_insert(users)
user = User[123]
pp Movie.nearest_neighbors(:factors, user.factors, distance: "inner_product").limit(5).map(&:name)
# excludes rated, so will be different for some users
# pp recommender.user_recs(user.id).map { |v| v[:item_id] }