diff --git a/learn/generation/langchain/handbook/06-langchain-agents.ipynb b/learn/generation/langchain/handbook/06-langchain-agents.ipynb
index 4acd1e01..ae1dd36e 100644
--- a/learn/generation/langchain/handbook/06-langchain-agents.ipynb
+++ b/learn/generation/langchain/handbook/06-langchain-agents.ipynb
@@ -377,7 +377,7 @@
"from langchain_experimental.sql import SQLDatabaseChain\n",
"\n",
"db = SQLDatabase(engine)\n",
- "sql_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)"
+ "sql_chain = SQLDatabaseChain.from_llm(llm=llm, db=db, verbose=True)"
]
},
{
@@ -428,9 +428,9 @@
{
"cell_type": "markdown",
"source": [
- "In this first example we will use slightly different type of agent - SQL Agent which can be instantiated with it's own method `create_sql_agent`. Other agents will be instantiated in more generic way as we will see below in other examples.\n",
+ "In this first example we will use a slightly different type of agent - SQL Agent which can be instantiated with its own method `create_sql_agent`. Other agents will be instantiated more generically as we will see below in other examples.\n",
"
\n",
- "This method uses *toolkit* instead of simple list of `tools`. You can read more about them in the [documentation](https://python.langchain.com/docs/modules/agents/toolkits/). For this use case, we will use `SQLDatabaseToolkit`."
+ "This method uses *toolkit* instead of a simple list of `tools`. You can read more about them in the [documentation](https://python.langchain.com/docs/modules/agents/toolkits/). For this use case, we will use `SQLDatabaseToolkit`."
],
"metadata": {
"id": "Tgn6dRLEcxli"
@@ -1249,4 +1249,4 @@
},
"nbformat": 4,
"nbformat_minor": 5
-}
\ No newline at end of file
+}