diff --git a/learn/generation/langchain/handbook/06-langchain-agents.ipynb b/learn/generation/langchain/handbook/06-langchain-agents.ipynb index 4acd1e01..ae1dd36e 100644 --- a/learn/generation/langchain/handbook/06-langchain-agents.ipynb +++ b/learn/generation/langchain/handbook/06-langchain-agents.ipynb @@ -377,7 +377,7 @@ "from langchain_experimental.sql import SQLDatabaseChain\n", "\n", "db = SQLDatabase(engine)\n", - "sql_chain = SQLDatabaseChain(llm=llm, database=db, verbose=True)" + "sql_chain = SQLDatabaseChain.from_llm(llm=llm, db=db, verbose=True)" ] }, { @@ -428,9 +428,9 @@ { "cell_type": "markdown", "source": [ - "In this first example we will use slightly different type of agent - SQL Agent which can be instantiated with it's own method `create_sql_agent`. Other agents will be instantiated in more generic way as we will see below in other examples.\n", + "In this first example we will use a slightly different type of agent - SQL Agent which can be instantiated with its own method `create_sql_agent`. Other agents will be instantiated more generically as we will see below in other examples.\n", "

\n", - "This method uses *toolkit* instead of simple list of `tools`. You can read more about them in the [documentation](https://python.langchain.com/docs/modules/agents/toolkits/). For this use case, we will use `SQLDatabaseToolkit`." + "This method uses *toolkit* instead of a simple list of `tools`. You can read more about them in the [documentation](https://python.langchain.com/docs/modules/agents/toolkits/). For this use case, we will use `SQLDatabaseToolkit`." ], "metadata": { "id": "Tgn6dRLEcxli" @@ -1249,4 +1249,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} \ No newline at end of file +}