-
Notifications
You must be signed in to change notification settings - Fork 299
/
Copy pathimages.py
556 lines (440 loc) · 21.7 KB
/
images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
"""
Image tools interfaces
~~~~~~~~~~~~~~~~~~~~~~
"""
import os
import numpy as np
import nibabel as nb
import nilearn.image as nli
from textwrap import indent
from niworkflows.nipype import logging
from niworkflows.nipype.utils.filemanip import fname_presuffix
from niworkflows.nipype.interfaces.base import (
traits, TraitedSpec, BaseInterfaceInputSpec,
File, InputMultiPath, OutputMultiPath)
from niworkflows.nipype.interfaces import fsl
from niworkflows.nipype.interfaces.base import SimpleInterface
LOGGER = logging.getLogger('interface')
class IntraModalMergeInputSpec(BaseInterfaceInputSpec):
in_files = InputMultiPath(File(exists=True), mandatory=True,
desc='input files')
hmc = traits.Bool(True, usedefault=True)
zero_based_avg = traits.Bool(True, usedefault=True)
to_ras = traits.Bool(True, usedefault=True)
class IntraModalMergeOutputSpec(TraitedSpec):
out_file = File(exists=True, desc='merged image')
out_avg = File(exists=True, desc='average image')
out_mats = OutputMultiPath(File(exists=True), desc='output matrices')
out_movpar = OutputMultiPath(File(exists=True), desc='output movement parameters')
class IntraModalMerge(SimpleInterface):
input_spec = IntraModalMergeInputSpec
output_spec = IntraModalMergeOutputSpec
def _run_interface(self, runtime):
in_files = self.inputs.in_files
if not isinstance(in_files, list):
in_files = [self.inputs.in_files]
# Generate output average name early
self._results['out_avg'] = fname_presuffix(self.inputs.in_files[0],
suffix='_avg', newpath=runtime.cwd)
if self.inputs.to_ras:
in_files = [reorient(inf) for inf in in_files]
if len(in_files) == 1:
filenii = nb.load(in_files[0])
filedata = filenii.get_data()
# magnitude files can have an extra dimension empty
if filedata.ndim == 5:
sqdata = np.squeeze(filedata)
if sqdata.ndim == 5:
raise RuntimeError('Input image (%s) is 5D' % in_files[0])
else:
in_files = [fname_presuffix(in_files[0], suffix='_squeezed',
newpath=runtime.cwd)]
nb.Nifti1Image(sqdata, filenii.get_affine(),
filenii.get_header()).to_filename(in_files[0])
if np.squeeze(nb.load(in_files[0]).get_data()).ndim < 4:
self._results['out_file'] = in_files[0]
self._results['out_avg'] = in_files[0]
# TODO: generate identity out_mats and zero-filled out_movpar
return runtime
in_files = in_files[0]
else:
magmrg = fsl.Merge(dimension='t', in_files=self.inputs.in_files)
in_files = magmrg.run().outputs.merged_file
mcflirt = fsl.MCFLIRT(cost='normcorr', save_mats=True, save_plots=True,
ref_vol=0, in_file=in_files)
mcres = mcflirt.run()
self._results['out_mats'] = mcres.outputs.mat_file
self._results['out_movpar'] = mcres.outputs.par_file
self._results['out_file'] = mcres.outputs.out_file
hmcnii = nb.load(mcres.outputs.out_file)
hmcdat = hmcnii.get_data().mean(axis=3)
if self.inputs.zero_based_avg:
hmcdat -= hmcdat.min()
nb.Nifti1Image(
hmcdat, hmcnii.get_affine(), hmcnii.get_header()).to_filename(
self._results['out_avg'])
return runtime
CONFORMATION_TEMPLATE = """\t\t<h3 class="elem-title">Anatomical Conformation</h3>
\t\t<ul class="elem-desc">
\t\t\t<li>Input T1w images: {n_t1w}</li>
\t\t\t<li>Output orientation: RAS</li>
\t\t\t<li>Output dimensions: {dims}</li>
\t\t\t<li>Output voxel size: {zooms}</li>
\t\t\t<li>Discarded images: {n_discards}</li>
{discard_list}
\t\t</ul>
"""
DISCARD_TEMPLATE = """\t\t\t\t<li><abbr title="{path}">{basename}</abbr></li>"""
class TemplateDimensionsInputSpec(BaseInterfaceInputSpec):
t1w_list = InputMultiPath(File(exists=True), mandatory=True, desc='input T1w images')
max_scale = traits.Float(3.0, usedefault=True,
desc='Maximum scaling factor in images to accept')
class TemplateDimensionsOutputSpec(TraitedSpec):
t1w_valid_list = OutputMultiPath(exists=True, desc='valid T1w images')
target_zooms = traits.Tuple(traits.Float, traits.Float, traits.Float,
desc='Target zoom information')
target_shape = traits.Tuple(traits.Int, traits.Int, traits.Int,
desc='Target shape information')
out_report = File(exists=True, desc='conformation report')
class TemplateDimensions(SimpleInterface):
"""
Finds template target dimensions for a series of T1w images, filtering low-resolution images,
if necessary.
Along each axis, the minimum voxel size (zoom) and the maximum number of voxels (shape) are
found across images.
The ``max_scale`` parameter sets a bound on the degree of up-sampling performed.
By default, an image with a voxel size greater than 3x the smallest voxel size
(calculated separately for each dimension) will be discarded.
To select images that require no scaling (i.e. all have smallest voxel sizes),
set ``max_scale=1``.
"""
input_spec = TemplateDimensionsInputSpec
output_spec = TemplateDimensionsOutputSpec
def _generate_segment(self, discards, dims, zooms):
items = [DISCARD_TEMPLATE.format(path=path, basename=os.path.basename(path))
for path in discards]
discard_list = '\n'.join(["\t\t\t<ul>"] + items + ['\t\t\t</ul>']) if items else ''
zoom_fmt = '{:.02g}mm x {:.02g}mm x {:.02g}mm'.format(*zooms)
return CONFORMATION_TEMPLATE.format(n_t1w=len(self.inputs.t1w_list),
dims='x'.join(map(str, dims)),
zooms=zoom_fmt,
n_discards=len(discards),
discard_list=discard_list)
def _run_interface(self, runtime):
# Load images, orient as RAS, collect shape and zoom data
in_names = np.array(self.inputs.t1w_list)
orig_imgs = np.vectorize(nb.load)(in_names)
reoriented = np.vectorize(nb.as_closest_canonical)(orig_imgs)
all_zooms = np.array([img.header.get_zooms()[:3] for img in reoriented])
all_shapes = np.array([img.shape[:3] for img in reoriented])
# Identify images that would require excessive up-sampling
valid = np.ones(all_zooms.shape[0], dtype=bool)
while valid.any():
target_zooms = all_zooms[valid].min(axis=0)
scales = all_zooms[valid] / target_zooms
if np.all(scales < self.inputs.max_scale):
break
valid[valid] ^= np.any(scales == scales.max(), axis=1)
# Ignore dropped images
valid_fnames = np.atleast_1d(in_names[valid]).tolist()
self._results['t1w_valid_list'] = valid_fnames
# Set target shape information
target_zooms = all_zooms[valid].min(axis=0)
target_shape = all_shapes[valid].max(axis=0)
self._results['target_zooms'] = tuple(target_zooms.tolist())
self._results['target_shape'] = tuple(target_shape.tolist())
# Create report
dropped_images = in_names[~valid]
segment = self._generate_segment(dropped_images, target_shape, target_zooms)
out_report = os.path.join(runtime.cwd, 'report.html')
with open(out_report, 'w') as fobj:
fobj.write(segment)
self._results['out_report'] = out_report
return runtime
class ConformInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True, desc='Input image')
target_zooms = traits.Tuple(traits.Float, traits.Float, traits.Float,
desc='Target zoom information')
target_shape = traits.Tuple(traits.Int, traits.Int, traits.Int,
desc='Target shape information')
class ConformOutputSpec(TraitedSpec):
out_file = File(exists=True, desc='Conformed image')
transform = File(exists=True, desc='Conformation transform')
class Conform(SimpleInterface):
"""Conform a series of T1w images to enable merging.
Performs two basic functions:
#. Orient to RAS (left-right, posterior-anterior, inferior-superior)
#. Resample to target zooms (voxel sizes) and shape (number of voxels)
"""
input_spec = ConformInputSpec
output_spec = ConformOutputSpec
def _run_interface(self, runtime):
# Load image, orient as RAS
fname = self.inputs.in_file
orig_img = nb.load(fname)
reoriented = nb.as_closest_canonical(orig_img)
# Set target shape information
target_zooms = np.array(self.inputs.target_zooms)
target_shape = np.array(self.inputs.target_shape)
target_span = target_shape * target_zooms
zooms = np.array(reoriented.header.get_zooms()[:3])
shape = np.array(reoriented.shape[:3])
# Reconstruct transform from orig to reoriented image
ornt_xfm = nb.orientations.inv_ornt_aff(
nb.io_orientation(orig_img.affine), orig_img.shape)
# Identity unless proven otherwise
target_affine = reoriented.affine.copy()
conform_xfm = np.eye(4)
xyz_unit = reoriented.header.get_xyzt_units()[0]
if xyz_unit == 'unknown':
# Common assumption; if we're wrong, unlikely to be the only thing that breaks
xyz_unit = 'mm'
# Set a 0.05mm threshold to performing rescaling
atol = {'meter': 1e-5, 'mm': 0.01, 'micron': 10}[xyz_unit]
# Rescale => change zooms
# Resize => update image dimensions
rescale = not np.allclose(zooms, target_zooms, atol=atol)
resize = not np.all(shape == target_shape)
if rescale or resize:
if rescale:
scale_factor = target_zooms / zooms
target_affine[:3, :3] = reoriented.affine[:3, :3].dot(np.diag(scale_factor))
if resize:
# The shift is applied after scaling.
# Use a proportional shift to maintain relative position in dataset
size_factor = target_span / (zooms * shape)
# Use integer shifts to avoid unnecessary interpolation
offset = (reoriented.affine[:3, 3] * size_factor - reoriented.affine[:3, 3])
target_affine[:3, 3] = reoriented.affine[:3, 3] + offset.astype(int)
data = nli.resample_img(reoriented, target_affine, target_shape).get_data()
conform_xfm = np.linalg.inv(reoriented.affine).dot(target_affine)
reoriented = reoriented.__class__(data, target_affine, reoriented.header)
# Image may be reoriented, rescaled, and/or resized
if reoriented is not orig_img:
out_name = fname_presuffix(fname, suffix='_ras', newpath=runtime.cwd)
reoriented.to_filename(out_name)
else:
out_name = fname
transform = ornt_xfm.dot(conform_xfm)
assert np.allclose(orig_img.affine.dot(transform), target_affine)
mat_name = fname_presuffix(fname, suffix='.mat', newpath=runtime.cwd, use_ext=False)
np.savetxt(mat_name, transform, fmt='%.08f')
self._results['out_file'] = out_name
self._results['transform'] = mat_name
return runtime
class ReorientInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True,
desc='Input T1w image')
class ReorientOutputSpec(TraitedSpec):
out_file = File(exists=True, desc='Reoriented T1w image')
transform = File(exists=True, desc='Reorientation transform')
class Reorient(SimpleInterface):
"""Reorient a T1w image to RAS (left-right, posterior-anterior, inferior-superior)
Syncs qform and sform codes for consistent treatment by all software
"""
input_spec = ReorientInputSpec
output_spec = ReorientOutputSpec
def _run_interface(self, runtime):
# Load image, orient as RAS
fname = self.inputs.in_file
orig_img = nb.load(fname)
reoriented = nb.as_closest_canonical(orig_img)
# Reconstruct transform from orig to reoriented image
ornt_xfm = nb.orientations.inv_ornt_aff(
nb.io_orientation(orig_img.affine), orig_img.shape)
normalized = normalize_xform(reoriented)
# Image may be reoriented
if normalized is not orig_img:
out_name = fname_presuffix(fname, suffix='_ras', newpath=runtime.cwd)
normalized.to_filename(out_name)
else:
out_name = fname
mat_name = fname_presuffix(fname, suffix='.mat', newpath=runtime.cwd, use_ext=False)
np.savetxt(mat_name, ornt_xfm, fmt='%.08f')
self._results['out_file'] = out_name
self._results['transform'] = mat_name
return runtime
class ValidateImageInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True, desc='input image')
class ValidateImageOutputSpec(TraitedSpec):
out_file = File(exists=True, desc='validated image')
out_report = File(exists=True, desc='HTML segment containing warning')
class ValidateImage(SimpleInterface):
"""
Check the correctness of x-form headers (matrix and code)
This interface implements the `following logic
<https://github.com/poldracklab/fmriprep/issues/873#issuecomment-349394544>`_:
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| valid quaternions | `qform_code > 0` | `sform_code > 0` | `qform == sform` \
| actions |
+===================+==================+==================+==================\
+================================================+
| True | True | True | True \
| None |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| True | True | False | * \
| sform, scode <- qform, qcode |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| * | * | True | False \
| qform, qcode <- sform, scode |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| * | False | True | * \
| qform, qcode <- sform, scode |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| * | False | False | * \
| sform, qform <- best affine; scode, qcode <- 1 |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
| False | * | False | * \
| sform, qform <- best affine; scode, qcode <- 1 |
+-------------------+------------------+------------------+------------------\
+------------------------------------------------+
"""
input_spec = ValidateImageInputSpec
output_spec = ValidateImageOutputSpec
def _run_interface(self, runtime):
img = nb.load(self.inputs.in_file)
out_report = os.path.abspath('report.html')
# Retrieve xform codes
sform_code = int(img.header._structarr['sform_code'])
qform_code = int(img.header._structarr['qform_code'])
# Check qform is valid
valid_qform = False
try:
img.get_qform()
valid_qform = True
except ValueError:
pass
# Matching affines
matching_affines = valid_qform and np.allclose(img.get_qform(), img.get_sform())
# Both match, qform valid (implicit with match), codes okay -> do nothing, empty report
if matching_affines and qform_code > 0 and sform_code > 0:
self._results['out_file'] = self.inputs.in_file
open(out_report, 'w').close()
self._results['out_report'] = out_report
return runtime
# A new file will be written
out_fname = fname_presuffix(self.inputs.in_file, suffix='_valid', newpath=runtime.cwd)
self._results['out_file'] = out_fname
# Row 2:
if valid_qform and qform_code > 0 and sform_code == 0:
img.set_sform(img.get_qform(), qform_code)
warning_txt = 'Note on orientation: sform matrix set'
description = """\
<p class="elem-desc">The sform has been copied from qform.</p>
"""
# Rows 3-4:
# Note: if qform is not valid, matching_affines is False
elif sform_code > 0 and (not matching_affines or qform_code == 0):
img.set_qform(img.get_sform(), sform_code)
warning_txt = 'Note on orientation: qform matrix overwritten'
description = """\
<p class="elem-desc">The qform has been copied from sform.</p>
"""
if not valid_qform and qform_code > 0:
warning_txt = 'WARNING - Invalid qform information'
description = """\
<p class="elem-desc">
The qform matrix found in the file header is invalid.
The qform has been copied from sform.
Checking the original qform information from the data produced
by the scanner is advised.
</p>
"""
# Rows 5-6:
else:
affine = img.affine
img.set_sform(affine, nb.nifti1.xform_codes['scanner'])
img.set_qform(affine, nb.nifti1.xform_codes['scanner'])
warning_txt = 'WARNING - Missing orientation information'
description = """\
<p class="elem-desc">
FMRIPREP could not retrieve orientation information from the image header.
The qform and sform matrices have been set to a default, LAS-oriented affine.
Analyses of this dataset MAY BE INVALID.
</p>
"""
snippet = '<h3 class="elem-title">%s</h3>\n%s\n' % (warning_txt, description)
# Store new file and report
img.to_filename(out_fname)
with open(out_report, 'w') as fobj:
fobj.write(indent(snippet, '\t' * 3))
self._results['out_report'] = out_report
return runtime
class InvertT1wInputSpec(BaseInterfaceInputSpec):
in_file = File(exists=True, mandatory=True,
desc='Skull-stripped T1w structural image')
ref_file = File(exists=True, mandatory=True,
desc='Skull-stripped reference image')
class InvertT1wOutputSpec(TraitedSpec):
out_file = File(exists=True, desc='Inverted T1w structural image')
class InvertT1w(SimpleInterface):
input_spec = InvertT1wInputSpec
output_spec = InvertT1wOutputSpec
def _run_interface(self, runtime):
t1_img = nli.load_img(self.inputs.in_file)
t1_data = t1_img.get_data()
epi_data = nli.load_img(self.inputs.ref_file).get_data()
# We assume the image is already masked
mask = t1_data > 0
t1_min, t1_max = np.unique(t1_data)[[1, -1]]
epi_min, epi_max = np.unique(epi_data)[[1, -1]]
scale_factor = (epi_max - epi_min) / (t1_max - t1_min)
inv_data = mask * ((t1_max - t1_data) * scale_factor + epi_min)
out_file = fname_presuffix(self.inputs.in_file, suffix='_inv', newpath=runtime.cwd)
nli.new_img_like(t1_img, inv_data, copy_header=True).to_filename(out_file)
self._results['out_file'] = out_file
return runtime
def reorient(in_file, out_file=None):
"""Reorient Nifti files to RAS"""
if out_file is None:
out_file = fname_presuffix(in_file, suffix='_ras', newpath=os.getcwd())
nb.as_closest_canonical(nb.load(in_file)).to_filename(out_file)
return out_file
def extract_wm(in_seg, wm_label=3):
import os.path as op
import nibabel as nb
import numpy as np
nii = nb.load(in_seg)
data = np.zeros(nii.shape, dtype=np.uint8)
data[nii.get_data() == wm_label] = 1
hdr = nii.header.copy()
hdr.set_data_dtype(np.uint8)
nb.Nifti1Image(data, nii.affine, hdr).to_filename('wm.nii.gz')
return op.abspath('wm.nii.gz')
def normalize_xform(img):
""" Set identical, valid qform and sform matrices in an image
Selects the best available affine (sform > qform > shape-based), and
coerces it to be qform-compatible (no shears).
The resulting image represents this same affine as both qform and sform,
and is marked as NIFTI_XFORM_ALIGNED_ANAT, indicating that it is valid,
not aligned to template, and not necessarily preserving the original
coordinates.
If header would be unchanged, returns input image.
"""
# Let nibabel convert from affine to quaternions, and recover xform
tmp_header = img.header.copy()
tmp_header.set_qform(img.affine)
xform = tmp_header.get_qform()
xform_code = 2
# Check desired codes
qform, qform_code = img.get_qform(coded=True)
sform, sform_code = img.get_sform(coded=True)
if all((qform is not None and np.allclose(qform, xform),
sform is not None and np.allclose(sform, xform),
int(qform_code) == xform_code, int(sform_code) == xform_code)):
return img
new_img = img.__class__(img.get_data(), xform, img.header)
# Unconditionally set sform/qform
new_img.set_sform(xform, xform_code)
new_img.set_qform(xform, xform_code)
return new_img