-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy patheval.py
157 lines (137 loc) · 5.02 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import json
import h5py
import argparse
import numpy as np
import plyfile as ply
import scipy.stats as stats
from utils import block_merge
parser = argparse.ArgumentParser()
parser.add_argument('--logdir', help='path to the logging directory')
parser.add_argument('--visualize', action='store_true', help='save point clouds to PLY files')
args = parser.parse_args()
logdir = args.logdir
visualize = args.visualize
config = os.path.join(logdir, 'config.json')
args = json.load(open(config))
fname = os.path.join(logdir, 'pred.npz')
print('> Loading predictions from {}...'.format(fname))
pdict = np.load(fname)
pdict = np.stack([pdict['semantics'], pdict['instances']], axis=-1)
fname = os.path.join(args['root'], 'metadata', 'classes.txt')
classes = [line.strip() for line in open(fname, 'r')]
fname = os.path.join(args['root'], 'metadata', 'sizes.txt')
sizes = np.loadtxt(fname)
fname = os.path.join(args['root'], 'metadata', 'test.txt')
flist = [line.strip() for line in open(fname)]
num_classes = args['num_classes']
accu = np.zeros(num_classes)
freq = np.zeros(num_classes)
inter = np.zeros(num_classes)
union = np.zeros(num_classes)
total = np.zeros(num_classes)
fps = [[] for i in range(num_classes)]
tps = [[] for i in range(num_classes)]
offset = 0
for fname in flist:
print('> Evaluating on {}...'.format(fname))
fname = os.path.join(args['root'], 'h5', fname)
fin = h5py.File(fname)
coords = fin['coords'][:]
points = fin['points'][:]
labels = fin['labels'][:]
step = coords.shape[0]
pred = pdict[offset:offset+step]
pred = pred.reshape(-1, 2)
coords = coords.reshape(-1, 3)
points = points.reshape(-1, 9)
truth = labels.reshape(-1, 2)
num_points = coords.shape[0]
# evaluate semantic accuracy & IoU
for i in range(num_classes):
indices = (truth[:, 0] == i)
correct = (pred[indices, 0] == truth[indices, 0])
accu[i] += np.sum(correct)
freq[i] += np.sum(indices)
inter[i] += np.sum((pred[:, 0] == i) & (truth[:, 0] == i))
union[i] += np.sum((pred[:, 0] == i) | (truth[:, 0] == i))
# evaluate instance mAP
proposals = [[] for i in range(num_classes)]
for gid in np.unique(pred[:, 1]):
indices = (pred[:, 1] == gid)
cls = int(stats.mode(pred[indices, 0])[0])
size = np.sum(indices)
if size > 0.25 * sizes[cls]: # remove small instances
proposals[cls] += [indices]
instances = [[] for i in range(num_classes)]
for gid in np.unique(truth[:, 1]):
indices = (truth[:, 1] == gid)
cls = int(stats.mode(truth[indices, 0])[0])
instances[cls] += [indices]
for i in range(num_classes):
total[i] += len(instances[i])
tp = np.zeros(len(proposals[i]))
fp = np.zeros(len(proposals[i]))
gt = np.zeros(len(instances[i]))
for pid, u in enumerate(proposals[i]):
overlap = 0.0
detected = 0
for iid, v in enumerate(instances[i]):
iou = np.sum((u & v)) / np.sum((u | v))
if iou > overlap:
overlap = iou
detected = iid
if overlap >= 0.5:
tp[pid] = 1
else:
fp[pid] = 1
tps[i] += [tp]
fps[i] += [fp]
if visualize:
colors = (points[:, 3:6] * 255).astype(np.uint8)
vertex = [(coords[i, 0], coords[i, 1], coords[i, 2],
colors[i, 0], colors[i, 1], colors[i, 2],
pred[i, 0], pred[i, 1] + 1)
for i in range(num_points)]
vertex = np.array(vertex, dtype=[
('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
('red', 'u1'), ('green', 'u1'), ('blue', 'u1'),
('nyu_class', 'u2'), ('label', 'u4')
])
el = ply.PlyElement.describe(vertex, 'vertex')
data = ply.PlyData([el], text=False)
basename = os.path.splitext(os.path.basename(fname))[0]
fname = os.path.join(logdir, basename)
if not os.path.exists(fname):
os.mkdir(fname)
fname = os.path.join(logdir, basename, basename + '.ply')
print('> Writing point cloud to {}...'.format(fname))
data.write(fname)
offset += step
oacc = np.sum(accu) / np.sum(freq)
accu = accu / freq
iou = inter / union
p = np.zeros(num_classes)
r = np.zeros(num_classes)
for i in range(num_classes):
tp = np.concatenate(tps[i], axis=0)
fp = np.concatenate(fps[i], axis=0)
tp = np.sum(tp)
fp = np.sum(fp)
p[i] = tp / (tp + fp)
r[i] = tp / total[i]
perf = {
'accuracy': list(accu),
'IoU': list(iou),
'precision': list(p),
'recall': list(r)
}
print('> Overall accuracy: {:.3f}'.format(oacc))
print('> Mean accuracy: {:.3f}'.format(np.mean(accu)))
print('> Mean IoU: {:.3f}'.format(np.mean(iou)))
print('> Mean precision: {:.3f}'.format(np.mean(p)))
print('> Mean recall: {:.3f}'.format(np.mean(r)))
fname = os.path.join(logdir, 'eval.json')
print('> Writing report to {}...'.format(fname))
with open(fname, 'w') as fp:
json.dump(perf, fp, indent=4)