Skip to content

Commit 2f4e5bf

Browse files
authored
Updating figures & descriptions for Ch 4 #23
1 parent 855ffab commit 2f4e5bf

File tree

1 file changed

+29
-5
lines changed

1 file changed

+29
-5
lines changed

Ch4/README.md

+29-5
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,15 @@
11
# Text Classification
22

3-
Set of notebooks associated with Chapter 4 of the book.
3+
## 🔖 Outline
44

5-
1. **[One Pipeline Many Classifiers](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/01_OnePipeline_ManyClassifiers.ipynb)**: Here we demonstrate text classification using various algorithms such as Naive Bayes, Logistic Regression and Support Vector Machines.
5+
To be added
6+
7+
8+
## 🗒️ Notebooks
9+
10+
Set of notebooks associated with the chapter.
11+
12+
1. **[One Pipeline Many Classifiers](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/01_OnePipeline_ManyClassifiers.ipynb)**: Here we demonstrate text classification using various algorithms such as Naive Bayes, Logistic Regression, and Support Vector Machines.
613

714
2. **[Doc2Vec for Text Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/02_Doc2Vec_Example.ipynb)**: Here we demonstrate how to train your own Doc2Vec embedding and use it for text classification.
815

@@ -12,14 +19,31 @@ Set of notebooks associated with Chapter 4 of the book.
1219

1320
5. **[NNs for Text Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/05_DeepNN_Example.ipynb)**: Here we demonstrate text classification using pre-trained and custom word embeddings with various Deep Learning Models.
1421

15-
6. **[BERT: Text Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/06_BERT_IMDB_Sentiment_Classification.ipynb)**: Here we demonstrate how we train and fine tune pytorch pre-trained BERT on IMDB reviews to predict their sentiment using HuggingFace Transformers library.
22+
6. **[BERT: Text Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/06_BERT_IMDB_Sentiment_Classification.ipynb)**: Here we demonstrate how we train and fine-tune pytorch pre-trained BERT on IMDB reviews to predict their sentiment using HuggingFace Transformers library.
1623

1724
7. **[BERT: Text CLassification using Ktrain](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/07_BERT_Sentiment_Classification_IMDB_ktrain.ipynb)**: Here we demonstrate how we can use BERT to predict the sentiment of movie reviews using the ktrain library.
1825

1926
8. **[LIME-1](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/08_LimeDemo.ipynb)**: Here we demonstrate how to interpret the predictions of a logistic regression model using LIME.
2027

21-
9. **[LIME-2](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/09_Lime_RNN.ipynb)**: Here we demonstrate how to interpret predictions of a RNN model using LIME.
28+
9. **[LIME-2](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/09_Lime_RNN.ipynb)**: Here we demonstrate how to interpret predictions of an RNN model using LIME.
2229

2330
10. **[SHAP](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/10_ShapDemo.ipynb)**: Here we demonstrate how to interpret ML and DL text classification models using SHAP.
2431

25-
11. **[Spam Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/11_SpamClassification.ipynb)**: Here we demonstrate how to classify a text message as SPAM or HAM using pre-trained models from the fastai library.
32+
11. **[Spam Classification](https://github.com/practical-nlp/practical-nlp/blob/master/Ch4/11_SpamClassification.ipynb)**: Here we demonstrate how to classify a text message as SPAM or HAM using pre-trained models from the fastai library. 
33+
34+
35+
## 🖼️ Figures
36+
37+
Color figures as requested by the readers.
38+
39+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-1.png)
40+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-2.png)
41+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-3.png)
42+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-4.png)
43+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-5.png)
44+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-6.png)
45+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-7.png)
46+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-8.png)
47+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-9.png)
48+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-10.png)
49+
![figure](https://github.com/practical-nlp/practical-nlp-figures/raw/master/figures/4-11.png)

0 commit comments

Comments
 (0)