-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_classifier.py
270 lines (231 loc) · 10.6 KB
/
eval_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import argparse
import csv
import json
import os
from bert_score import BERTScorer
import numpy as np
import rouge
from tqdm import tqdm
import torch
"""
Use https://github.com/pltrdy/rouge for rouge-l evaluation.
UnifiedQA(https://github.com/allenai/unifiedqa) also uses this library but it appears to be an older version
"""
rouge_l_evaluator = rouge.Rouge(
metrics=["rouge-l"],
)
def rouge_l_score(prediction, ground_truths):
if len(prediction) == 0:
return 0
return max([rouge_l_evaluator.get_scores(prediction, g)[0]["rouge-l"]["f"] for g in ground_truths])
def load_bert_preds(pred_path):
with open(pred_path) as f:
preds= json.load(f)
preds = {k: v["text"] for k, v in preds.items()}
return preds
def load_bert_dir(dir_path):
all_preds = {}
for qtype in ["short", "medium", "long", "yesno"]:
preds = load_bert_preds(os.path.join(dir_path, f"predictions_{qtype}.json"))
all_preds.update(preds)
return all_preds
def load_fid_preds(pred_path):
with open(pred_path) as f:
lines = csv.reader(f, delimiter="\t")
preds = {str(l[0]): str(l[1]) for l in lines}
return preds
def load_fid_dir(dir_path):
all_preds = {}
for qtype in ["short", "medium", "long", "yesno"]:
preds = load_fid_preds(os.path.join(dir_path, f"final_output_test_{qtype}.txt"))
all_preds.update(preds)
return all_preds
def load_gpt_dir(data_file):
with open(data_file) as f:
preds = json.load(f)
preds = {k: v["text"] for k, v in preds.items()}
return preds
def load_classifier(pred_path):
id2label = {}
with open(pred_path) as f:
lines = csv.reader(f, delimiter="\t")
for i, line in enumerate(lines):
if i == 0:
continue
id2label[line[2]] = line[1]
return id2label
def load_data(data_file):
with open(data_file) as f:
data = json.load(f)["data"]
all_data = {}
for d in data:
id = d["id"]
qtype = d["question_type"]
if qtype == "null":
continue
elif qtype == "long":
gold_passages = d["gold_passages"]
se_pos = d["long_answer_start_end_characters"]
all_data[id] = {"answers": [p[s:e] for p, (s,e) in zip(gold_passages, se_pos)]}
elif qtype == "yesno":
all_data[id] = {"answers": d["yes_no_answer"]}
else:
all_data[id] = {"answers": d["answers"]}
all_data[id]["question_type"] = qtype
all_data[id]["question"] = d["question"]
return all_data
def load_and_calculate(data, classes, short_dir, medium_dir, long_dir, yesno_dir, short_format, medium_format, long_format, yesno_format, print_examples, bertscorer=None):
predictions = {}
#temp_file = "/n/fs/nlp-hyen/jiw/all_table_ids.json"
#with open(temp_file) as f:
#candidate_ids = json.load(f)
predictions["short"] = load_fid_dir(short_dir) if short_format == "fid" else load_bert_dir(short_dir) if short_format == "bert" else load_gpt_dir(short_dir)
predictions["medium"] = load_fid_dir(medium_dir) if medium_format == "fid" else load_bert_dir(medium_dir) if medium_format == "bert" else load_gpt_dir(medium_dir)
predictions["long"] = load_fid_dir(long_dir) if long_format == "fid" else load_bert_dir(long_dir) if long_format == "bert" else load_gpt_dir(long_dir)
predictions["yesno"] = load_fid_dir(yesno_dir) if yesno_format == "fid" else load_bert_dir(yesno_dir) if yesno_format == "bert" else load_gpt_dir(yesno_dir)
metrics = ["em", "f1", "rouge-l", "length", "bertscore", "preds", "answers"]
results = {
"short": {x: [] for x in metrics},
"medium": {x: [] for x in metrics},
"long": {x: [] for x in metrics},
"yesno": {x: [] for x in metrics},
}
count = 0
for i, (id, d) in enumerate(data.items()):
#if id not in candidate_ids:
#continue
qtype = d["question_type"]
question = d["question"]
classification = classes[id]
#print(f"qtype = {qtype}\nquestion: {question}\nclassification: {classification}")
#import pdb; pdb.set_trace()
if args.oracle_classifier:
classification = qtype
#if id not in predictions[classification]:
#continue
pred = predictions[classification][id]
answers = list(set(d["answers"]))
em = drqa_metric_max_over_ground_truths(drqa_exact_match_score, pred, answers)
if qtype == "short" or qtype == "medium":
f1 = drqa_metric_max_over_ground_truths(lambda x, y: f1_score(x, y)[0], pred, answers)
results[qtype]["f1"].append(f1)
if qtype == "long":
rouge_l = rouge_l_score(pred, answers)
results[qtype]["rouge-l"].append(rouge_l)
results[qtype]["em"].append(em)
results[qtype]["length"].append(len(pred.split()))
results[qtype]["preds"].append(pred)
results[qtype]["answers"].append(answers)
if print_examples and qtype == "short" and count < 10:
print("-" * 30)
print(f"Question Type: {qtype}; Question: {question}\n")
print(f"Answer: {answers}\n")
print(f"Prediction: {pred}")
print("-" * 30)
count += 1
if bertscorer is not None:
with torch.inference_mode():
for qtype in tqdm(["short", "medium", "long", "yesno"]):
scores = bertscorer.score(results[qtype]["preds"], results[qtype]["answers"], batch_size=8)
results[qtype]["bertscore"] = [x.tolist() for x in scores]
micro_em = []
macro_em = []
ret = []
micro_bert = []
macro_bert = []
bert_ret = []
output = ""
lengths_output = ""
bertscore_output = ""
for qtype in ["short", "medium", "long", "yesno"]:
#for qtype in ["yesno"]:
em = results[qtype]["em"]
f1 = results[qtype]["f1"]
rouge_l = results[qtype]["rouge-l"]
micro_em += em
macro_em.append(100 * sum(em) / len(em) if len(em) > 0 else -1)
if qtype == "yesno":
ret.append(macro_em[-1])
output += f"{ret[-1]:.02f} "
elif qtype == "long":
ret.append(macro_em[-1])
ret.append(100 * sum(rouge_l) / len(rouge_l) if len(rouge_l) > 0 else -1)
output += f"{ret[-2]:.02f} {ret[-1]:.02f} "
else:
ret.append(macro_em[-1])
ret.append(100 * sum(f1) / len(f1) if len(f1) > 0 else -1)
output += f"{ret[-2]:.02f} {ret[-1]:.02f} "
if macro_em[-1] == -1:
macro_em.pop()
lengths_output += f"{np.mean(results[qtype]['length']):.1f} ({np.std(results[qtype]['length']):.1f}),"
if bertscorer is not None:
scores = np.array(results[qtype]["bertscore"]) * 100
micro_bert += scores[2].tolist()
scores = scores.mean(1)
macro_bert.append(scores[2])
bert_ret.append(scores[2])
#bertscore_output += f"{scores[0]:.1f},{scores[1]:.1f},{scores[2]:.1f},"
bertscore_output += f"{scores[2]:.1f},"
ret.append(sum(macro_em) / len(macro_em))
ret.append(100 * sum(micro_em) / len(micro_em))
output += f"{ret[-2]:.02f} {ret[-1]:.02f}"
print(output)
temp = results["short"]['length'] + results["medium"]['length'] + results["long"]['length']
lengths_output += f"{np.mean(temp):.1f} ({np.std(temp):.1f}),"
temp += results["yesno"]["length"]
lengths_output += f"{np.mean(temp):.1f} ({np.std(temp):.1f})"
#print("lengths: ", lengths_output)
bert_ret += [np.mean(macro_bert), np.mean(micro_bert)]
bertscore_output += f"{np.mean(macro_bert):.1f},{np.mean(micro_bert):.1f}"
print("bertscores:", bertscore_output)
return bert_ret if bertscorer is not None else ret
if __name__ == "__main__":
parser = argparse.ArgumentParser("evaluate with classifier")
parser.add_argument("--classifier_predictions", type=str, default=None)
parser.add_argument("--data_file", type=str, default=None)
parser.add_argument("--short_model_dir", type=str, default=None, help="contains all the prediction files")
parser.add_argument("--short_format", type=str, default=None, help="bert or fid or gpt")
parser.add_argument("--medium_model_dir", type=str, default=None, help="contains all the prediction files")
parser.add_argument("--medium_format", type=str, default=None, help="bert or fid or gpt")
parser.add_argument("--long_model_dir", type=str, default=None, help="contains all the prediction files")
parser.add_argument("--long_format", type=str, default=None, help="bert or fid or gpt")
parser.add_argument("--yesno_model_dir", type=str, default=None, help="contains all the prediction files")
parser.add_argument("--yesno_format", type=str, default=None, help="bert or fid or gpt")
parser.add_argument("--oracle_classifier", action="store_true", help="assume gold classifier")
parser.add_argument("--bertscore", action="store_true", help="calculate bertscore")
parser.add_argument("--print_examples", action="store_true", help="print examples")
parser.add_argument("--num_trials", type=int, default=0, help="assume seed and iterate over trials if greater than 1")
args = parser.parse_args()
data = load_data(args.data_file)
classes = load_classifier(args.classifier_predictions)
if args.bertscore:
model_type = "microsoft/deberta-xlarge-mnli"
num_layers = 40
bertscorer = BERTScorer(model_type=model_type, num_layers=num_layers)
print(f"bertscorer hash: {bertscorer.hash}")
else:
bertscorer = None
print("Short-EM Short-F1 Medium-EM Medium-F1 Long-EM Long-ROUGEL YesNo-Acc MacroAvg MicroAvg")
if args.num_trials > 0:
results = []
for i in range(args.num_trials):
ret = load_and_calculate(data, classes,
args.short_model_dir + f"_{i}.json",
args.medium_model_dir + f"_{i}.json",
args.long_model_dir + f"_{i}.json",
args.yesno_model_dir + f"_{i}.json",
args.short_format,
args.medium_format,
args.long_format,
args.yesno_format,
args.print_examples,
bertscorer,
)
results.append(ret)
output = ""
results = np.array(results)
for stat in results.transpose():
output += f"{np.mean(stat):.1f}({np.std(stat):.1f}),"
print(output)
else:
load_and_calculate(data, classes, args.short_model_dir, args.medium_model_dir, args.long_model_dir, args.yesno_model_dir, args.short_format, args.medium_format, args.long_format, args.yesno_format, args.print_examples, bertscorer)