|
| 1 | +from ogb.nodeproppred import PygNodePropPredDataset |
| 2 | +import torch_geometric.transforms as T |
| 3 | +from torch_geometric.datasets import OGB_MAG |
| 4 | +import os.path as osp |
| 5 | +import argparse |
| 6 | +from timeit import default_timer |
| 7 | +from torch_geometric.loader import NeighborLoader |
| 8 | + |
| 9 | + |
| 10 | +def run(args: argparse.ArgumentParser) -> None: |
| 11 | + |
| 12 | + print("BENCHMARK STARTS") |
| 13 | + for dataset_name in args.datasets: |
| 14 | + print("Dataset: ", dataset_name) |
| 15 | + |
| 16 | + root = osp.join(osp.dirname(osp.realpath(__file__)), |
| 17 | + args.root, dataset_name.partition("-")[2]) |
| 18 | + |
| 19 | + if dataset_name == 'ogbn-mag': |
| 20 | + transform = T.ToUndirected(merge=True) |
| 21 | + dataset = OGB_MAG(root=root, transform=transform) |
| 22 | + train_idx = ('paper', dataset[0]['paper'].train_mask) |
| 23 | + eval_idx = ('paper', None) |
| 24 | + neighbor_sizes = args.hetero_neighbor_sizes |
| 25 | + else: |
| 26 | + dataset = PygNodePropPredDataset(dataset_name, root) |
| 27 | + split_idx = dataset.get_idx_split() |
| 28 | + train_idx = split_idx['train'] |
| 29 | + eval_idx = None |
| 30 | + neighbor_sizes = args.homo_neighbor_sizes |
| 31 | + |
| 32 | + data = dataset[0].to(args.device) |
| 33 | + |
| 34 | + print('Train sampling') |
| 35 | + for sizes in neighbor_sizes: |
| 36 | + print(f'Sizes={sizes}') |
| 37 | + for batch_size in args.batch_sizes: |
| 38 | + train_loader = NeighborLoader(data, |
| 39 | + num_neighbors=sizes, |
| 40 | + input_nodes=train_idx, |
| 41 | + batch_size=batch_size, |
| 42 | + shuffle=True, |
| 43 | + num_workers=args.num_workers,) |
| 44 | + start = default_timer() |
| 45 | + iter = 0 |
| 46 | + times = [] |
| 47 | + for run in range(args.runs): |
| 48 | + start = default_timer() |
| 49 | + for batch in train_loader: |
| 50 | + iter = iter + 1 |
| 51 | + stop = default_timer() |
| 52 | + times.append(round(stop - start, 3)) |
| 53 | + average_time = round(sum(times) / args.runs, 3) |
| 54 | + print(f'Batch size={batch_size} iterations={iter} ' |
| 55 | + + f'times={times} average_time={average_time}') |
| 56 | + print('Evaluation sampling') |
| 57 | + for batch_size in args.eval_batch_sizes: |
| 58 | + subgraph_loader = NeighborLoader(data, |
| 59 | + num_neighbors=[-1], |
| 60 | + input_nodes=eval_idx, |
| 61 | + batch_size=batch_size, |
| 62 | + shuffle=False, |
| 63 | + num_workers=args.num_workers,) |
| 64 | + start = default_timer() |
| 65 | + iter = 0 |
| 66 | + times = [] |
| 67 | + for run in range(args.runs): |
| 68 | + start = default_timer() |
| 69 | + for batch in subgraph_loader: |
| 70 | + iter = iter + 1 |
| 71 | + stop = default_timer() |
| 72 | + times.append(round(stop - start, 3)) |
| 73 | + average_time = round(sum(times) / args.runs, 3) |
| 74 | + print(f'Batch size={batch_size} iterations={iter} ' |
| 75 | + + f'times={times} average_time={average_time}') |
| 76 | + |
| 77 | + |
| 78 | +if __name__ == '__main__': |
| 79 | + argparser = argparse.ArgumentParser('NeighborLoader Sampling Benchmarking') |
| 80 | + |
| 81 | + argparser.add_argument('--device', default='cpu', type=str) |
| 82 | + argparser.add_argument('--datasets', nargs="+", |
| 83 | + default=['ogbn-arxiv', 'ogbn-products', 'ogbn-mag'], type=str) |
| 84 | + argparser.add_argument('--root', default='../../data', type=str) |
| 85 | + argparser.add_argument( |
| 86 | + '--batch-sizes', default=[8192, 4096, 2048, 1024, 512], type=int) |
| 87 | + argparser.add_argument('--homo-neighbor_sizes', |
| 88 | + default=[[10, 5], [15, 10, 5], [20, 15, 10]], type=int) |
| 89 | + argparser.add_argument('--hetero-neighbor_sizes', |
| 90 | + default=[[5], [10], [10, 5]], type=int) |
| 91 | + argparser.add_argument('--eval-batch-sizes', |
| 92 | + default=[16384, 8192, 4096, 2048, 1024, 512], type=int) |
| 93 | + argparser.add_argument('--num-workers', default=0, type=int) |
| 94 | + argparser.add_argument('--runs', default=3, type=int) |
| 95 | + |
| 96 | + args = argparser.parse_args() |
| 97 | + |
| 98 | + run(args) |
0 commit comments