|
153 | 153 | # .. code:: python
|
154 | 154 | #
|
155 | 155 | # model = TheModelClass(*args, **kwargs)
|
156 |
| -# model.load_state_dict(torch.load(PATH)) |
| 156 | +# model.load_state_dict(torch.load(PATH), weights_only=True) |
157 | 157 | # model.eval()
|
158 | 158 | #
|
159 | 159 | # .. note::
|
|
206 | 206 | # .. code:: python
|
207 | 207 | #
|
208 | 208 | # # Model class must be defined somewhere
|
209 |
| -# model = torch.load(PATH) |
| 209 | +# model = torch.load(PATH, weights_only=False) |
210 | 210 | # model.eval()
|
211 | 211 | #
|
212 | 212 | # This save/load process uses the most intuitive syntax and involves the
|
|
290 | 290 | # model = TheModelClass(*args, **kwargs)
|
291 | 291 | # optimizer = TheOptimizerClass(*args, **kwargs)
|
292 | 292 | #
|
293 |
| -# checkpoint = torch.load(PATH) |
| 293 | +# checkpoint = torch.load(PATH, weights_only=True) |
294 | 294 | # model.load_state_dict(checkpoint['model_state_dict'])
|
295 | 295 | # optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
296 | 296 | # epoch = checkpoint['epoch']
|
|
354 | 354 | # optimizerA = TheOptimizerAClass(*args, **kwargs)
|
355 | 355 | # optimizerB = TheOptimizerBClass(*args, **kwargs)
|
356 | 356 | #
|
357 |
| -# checkpoint = torch.load(PATH) |
| 357 | +# checkpoint = torch.load(PATH, weights_only=True) |
358 | 358 | # modelA.load_state_dict(checkpoint['modelA_state_dict'])
|
359 | 359 | # modelB.load_state_dict(checkpoint['modelB_state_dict'])
|
360 | 360 | # optimizerA.load_state_dict(checkpoint['optimizerA_state_dict'])
|
|
407 | 407 | # .. code:: python
|
408 | 408 | #
|
409 | 409 | # modelB = TheModelBClass(*args, **kwargs)
|
410 |
| -# modelB.load_state_dict(torch.load(PATH), strict=False) |
| 410 | +# modelB.load_state_dict(torch.load(PATH), strict=False, weights_only=True) |
411 | 411 | #
|
412 | 412 | # Partially loading a model or loading a partial model are common
|
413 | 413 | # scenarios when transfer learning or training a new complex model.
|
|
446 | 446 | #
|
447 | 447 | # device = torch.device('cpu')
|
448 | 448 | # model = TheModelClass(*args, **kwargs)
|
449 |
| -# model.load_state_dict(torch.load(PATH, map_location=device)) |
| 449 | +# model.load_state_dict(torch.load(PATH, map_location=device, weights_only=True)) |
450 | 450 | #
|
451 | 451 | # When loading a model on a CPU that was trained with a GPU, pass
|
452 | 452 | # ``torch.device('cpu')`` to the ``map_location`` argument in the
|
|
469 | 469 | #
|
470 | 470 | # device = torch.device("cuda")
|
471 | 471 | # model = TheModelClass(*args, **kwargs)
|
472 |
| -# model.load_state_dict(torch.load(PATH)) |
| 472 | +# model.load_state_dict(torch.load(PATH, weights_only=True)) |
473 | 473 | # model.to(device)
|
474 | 474 | # # Make sure to call input = input.to(device) on any input tensors that you feed to the model
|
475 | 475 | #
|
|
497 | 497 | #
|
498 | 498 | # device = torch.device("cuda")
|
499 | 499 | # model = TheModelClass(*args, **kwargs)
|
500 |
| -# model.load_state_dict(torch.load(PATH, map_location="cuda:0")) # Choose whatever GPU device number you want |
| 500 | +# model.load_state_dict(torch.load(PATH, weights_only=True, map_location="cuda:0")) # Choose whatever GPU device number you want |
501 | 501 | # model.to(device)
|
502 | 502 | # # Make sure to call input = input.to(device) on any input tensors that you feed to the model
|
503 | 503 | #
|
|
0 commit comments