Skip to content

Commit 1157f0c

Browse files
committedNov 23, 2015
Merge pull request #210 from quantopian/round-trip2
ENH Round trip tearheet and supporting functions
2 parents 5e8f2d9 + 153c870 commit 1157f0c

10 files changed

+744
-52
lines changed
 

‎pyfolio/examples/round_trip_example.ipynb

+161
Large diffs are not rendered by default.

‎pyfolio/plotting.py

+113
Original file line numberDiff line numberDiff line change
@@ -16,11 +16,13 @@
1616

1717
import pandas as pd
1818
import numpy as np
19+
import scipy as sp
1920

2021
import seaborn as sns
2122
import matplotlib
2223
import matplotlib.pyplot as plt
2324
from matplotlib.ticker import FuncFormatter
25+
import matplotlib.lines as mlines
2426

2527
from sklearn import preprocessing
2628

@@ -1402,3 +1404,114 @@ def cumulate_returns(x):
14021404
ax.set_xticklabels(xticks_label)
14031405

14041406
return ax
1407+
1408+
1409+
def plot_round_trip_life_times(round_trips, ax=None):
1410+
"""
1411+
Plots timespans and directions of round trip trades.
1412+
1413+
Parameters
1414+
----------
1415+
round_trips : pd.DataFrame
1416+
DataFrame with one row per round trip trade.
1417+
- See full explanation in round_trips.extract_round_trips
1418+
ax : matplotlib.Axes, optional
1419+
Axes upon which to plot.
1420+
1421+
Returns
1422+
-------
1423+
ax : matplotlib.Axes
1424+
The axes that were plotted on.
1425+
"""
1426+
if ax is None:
1427+
ax = plt.subplot()
1428+
1429+
symbols = round_trips.symbol.unique()
1430+
symbol_idx = pd.Series(np.arange(len(symbols)), index=symbols)
1431+
1432+
for symbol, sym_round_trips in round_trips.groupby('symbol'):
1433+
for _, row in sym_round_trips.iterrows():
1434+
c = 'b' if row.long else 'r'
1435+
y_ix = symbol_idx[symbol]
1436+
ax.plot([row['open_dt'], row['close_dt']],
1437+
[y_ix, y_ix], color=c)
1438+
1439+
ax.set_yticklabels(symbols)
1440+
1441+
red_line = mlines.Line2D([], [], color='r', label='Short')
1442+
blue_line = mlines.Line2D([], [], color='b', label='Long')
1443+
ax.legend(handles=[red_line, blue_line], loc=0)
1444+
1445+
return ax
1446+
1447+
1448+
def show_profit_attribution(round_trips):
1449+
"""
1450+
Prints the share of total PnL contributed by each
1451+
traded name.
1452+
1453+
Parameters
1454+
----------
1455+
round_trips : pd.DataFrame
1456+
DataFrame with one row per round trip trade.
1457+
- See full explanation in round_trips.extract_round_trips
1458+
ax : matplotlib.Axes, optional
1459+
Axes upon which to plot.
1460+
1461+
Returns
1462+
-------
1463+
ax : matplotlib.Axes
1464+
The axes that were plotted on.
1465+
"""
1466+
1467+
total_pnl = round_trips['pnl'].sum()
1468+
pct_profit_attribution = round_trips.groupby(
1469+
'symbol')['pnl'].sum() / total_pnl
1470+
1471+
print('\nProfitability (PnL / PnL total) per name:')
1472+
print(pct_profit_attribution.sort(inplace=False, ascending=False))
1473+
1474+
1475+
def plot_prob_profit_trade(round_trips, ax=None):
1476+
"""
1477+
Plots a probability distribution for the event of making
1478+
a profitable trade.
1479+
1480+
Parameters
1481+
----------
1482+
round_trips : pd.DataFrame
1483+
DataFrame with one row per round trip trade.
1484+
- See full explanation in round_trips.extract_round_trips
1485+
ax : matplotlib.Axes, optional
1486+
Axes upon which to plot.
1487+
1488+
Returns
1489+
-------
1490+
ax : matplotlib.Axes
1491+
The axes that were plotted on.
1492+
"""
1493+
1494+
x = np.linspace(0, 1., 500)
1495+
1496+
round_trips['profitable'] = round_trips.pnl > 0
1497+
1498+
dist = sp.stats.beta(round_trips.profitable.sum(),
1499+
(~round_trips.profitable).sum())
1500+
y = dist.pdf(x)
1501+
lower_perc = dist.ppf(.025)
1502+
upper_perc = dist.ppf(.975)
1503+
1504+
lower_plot = dist.ppf(.001)
1505+
upper_plot = dist.ppf(.999)
1506+
1507+
if ax is None:
1508+
ax = plt.subplot()
1509+
1510+
ax.plot(x, y)
1511+
ax.axvline(lower_perc, color='0.5')
1512+
ax.axvline(upper_perc, color='0.5')
1513+
1514+
ax.set(xlabel='Probability making a profitable decision', ylabel='Belief',
1515+
xlim=(lower_plot, upper_plot), ylim=(0, y.max() + 1.))
1516+
1517+
return ax

‎pyfolio/round_trips.py

+248
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,248 @@
1+
#
2+
# Copyright 2015 Quantopian, Inc.
3+
#
4+
# Licensed under the Apache License, Version 2.0 (the "License");
5+
# you may not use this file except in compliance with the License.
6+
# You may obtain a copy of the License at
7+
#
8+
# http://www.apache.org/licenses/LICENSE-2.0
9+
#
10+
# Unless required by applicable law or agreed to in writing, software
11+
# distributed under the License is distributed on an "AS IS" BASIS,
12+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13+
# See the License for the specific language governing permissions and
14+
# limitations under the License.
15+
from __future__ import division
16+
from collections import defaultdict
17+
18+
import pandas as pd
19+
import numpy as np
20+
21+
22+
def extract_round_trips(transactions):
23+
"""
24+
Group transactions into "round trips." A round trip is started when a new
25+
long or short position is opened and is only completed when the number
26+
of shares in that position returns to or crosses zero.
27+
Computes pnl for each round trip.
28+
29+
For example, the following transactions would constitute one round trip:
30+
index amount price symbol
31+
2004-01-09 12:18:01 186 324.12 'AAPL'
32+
2004-01-09 15:12:53 -10 344.54 'AAPL'
33+
2004-01-13 14:41:23 24 320.21 'AAPL'
34+
2004-01-30 10:23:34 -200 340.43 'AAPL'
35+
36+
Parameters
37+
----------
38+
transactions : pd.DataFrame
39+
Prices and amounts of executed trades. One row per trade.
40+
- See full explanation in tears.create_full_tear_sheet
41+
42+
Returns
43+
-------
44+
round_trips : pd.DataFrame
45+
DataFrame with one row per round trip.
46+
"""
47+
# Transactions that cross zero must be split into separate
48+
# long and short transactions that end/start on zero.
49+
transactions_split = split_trades(transactions)
50+
51+
transactions_split['txn_dollars'] = \
52+
-transactions_split['amount'] * transactions_split['price']
53+
54+
round_trips = defaultdict(list)
55+
56+
for sym, trans_sym in transactions_split.groupby('symbol'):
57+
trans_sym = trans_sym.sort_index()
58+
amount_cumsum = trans_sym.amount.cumsum()
59+
# Find indicies where the position amount returns to zero.
60+
closed_idx = np.where(amount_cumsum == 0)[0] + 1
61+
# Identify the first trade as the beginning of a round trip.
62+
closed_idx = np.insert(closed_idx, 0, 0)
63+
64+
for trade_start, trade_end in zip(closed_idx, closed_idx[1:]):
65+
txn = trans_sym.iloc[trade_start:trade_end]
66+
67+
if len(txn) == 0:
68+
continue
69+
70+
assert txn.amount.sum() == 0
71+
long_trade = txn.amount.iloc[0] > 0
72+
pnl = txn.txn_dollars.sum()
73+
round_trips['symbol'].append(sym)
74+
round_trips['pnl'].append(pnl)
75+
round_trips['duration'].append(txn.index[-1] - txn.index[0])
76+
round_trips['long'].append(long_trade)
77+
round_trips['open_dt'].append(txn.index[0])
78+
round_trips['close_dt'].append(txn.index[-1])
79+
80+
# Investing txns push the position amount farther from zero.
81+
# invested is always a positive value. Returned - Invested = PnL.
82+
if long_trade:
83+
invested = -txn.query('txn_dollars < 0').txn_dollars.sum()
84+
else:
85+
invested = txn.query('txn_dollars > 0').txn_dollars.sum()
86+
87+
if invested == 0:
88+
round_trips['returns'].append(0)
89+
else:
90+
round_trips['returns'].append(pnl / invested)
91+
92+
if len(round_trips) == 0:
93+
return pd.DataFrame([])
94+
95+
round_trips = pd.DataFrame(round_trips)
96+
round_trips = round_trips[['open_dt', 'close_dt', 'duration',
97+
'pnl', 'returns', 'long', 'symbol']]
98+
99+
return round_trips
100+
101+
102+
def split_trades(transactions):
103+
"""
104+
Splits transactions that cause total position amount to cross zero.
105+
In other words, separates of the closing of one short/long position
106+
with the opening of a new long/short position.
107+
108+
For example, the second transaction in this transactions DataFrame
109+
would be divided as shown in the second DataFrame:
110+
index amount price symbol
111+
2004-01-09 12:18:01 180 324.12 'AAPL'
112+
2004-01-09 15:12:53 -200 344.54 'AAPL'
113+
114+
index amount price symbol
115+
2004-01-09 12:18:01 180 324.12 'AAPL'
116+
2004-01-09 15:12:53 -180 344.54 'AAPL'
117+
2004-01-09 15:12:54 -20 344.54 'AAPL'
118+
119+
Parameters
120+
----------
121+
transactions : pd.DataFrame
122+
Prices and amounts of executed trades. One row per trade.
123+
- See full explanation in tears.create_full_tear_sheet
124+
125+
Returns
126+
-------
127+
transactions_split : pd.DataFrame
128+
Prices and amounts of executed trades. Trades that cause
129+
total position amount to cross zero are divided.
130+
"""
131+
132+
trans_split = []
133+
134+
for sym, trans_sym in transactions.groupby('symbol'):
135+
trans_sym = trans_sym.sort_index()
136+
137+
while True:
138+
cum_amount = trans_sym.amount.cumsum()
139+
# find the indicies where position amount crosses zero
140+
sign_flip = np.where(np.abs(np.diff(np.sign(cum_amount))) == 2)[0]
141+
142+
if len(sign_flip) == 0:
143+
break # all sign flips are converted
144+
145+
sign_flip = sign_flip[0] + 2
146+
147+
txn = trans_sym.iloc[:sign_flip]
148+
149+
left_over_txn_amount = txn.amount.sum()
150+
assert left_over_txn_amount != 0
151+
152+
split_txn_1 = txn.iloc[[-1]].copy()
153+
split_txn_2 = txn.iloc[[-1]].copy()
154+
155+
split_txn_1['amount'] -= left_over_txn_amount
156+
split_txn_2['amount'] = left_over_txn_amount
157+
158+
# Delay 2nd trade by a second to avoid overlapping indices
159+
split_txn_2.index += pd.Timedelta(seconds=1)
160+
161+
assert split_txn_1.amount.iloc[0] + \
162+
split_txn_2.amount.iloc[0] == txn.iloc[-1].amount
163+
assert trans_sym.iloc[:sign_flip - 1].amount.sum() + \
164+
split_txn_1.amount.iloc[0] == 0
165+
166+
# Recreate transactions so far with split transaction
167+
trans_sym = pd.concat([trans_sym.iloc[:sign_flip - 1],
168+
split_txn_1,
169+
split_txn_2,
170+
trans_sym.iloc[sign_flip:]])
171+
172+
assert np.all(np.abs(np.diff(np.sign(trans_sym.amount.cumsum()))) != 2)
173+
trans_split.append(trans_sym)
174+
175+
transactions_split = pd.concat(trans_split)
176+
177+
return transactions_split
178+
179+
180+
def add_closing_transactions(positions, transactions):
181+
"""
182+
Appends transactions that close out all positions at the end of
183+
the timespan covered by positions data. Utilizes pricing information
184+
in the positions DataFrame to determine closing price.
185+
186+
Parameters
187+
----------
188+
positions : pd.DataFrame
189+
The positions that the strategy takes over time.
190+
transactions : pd.DataFrame
191+
Prices and amounts of executed trades. One row per trade.
192+
- See full explanation in tears.create_full_tear_sheet
193+
194+
Returns
195+
-------
196+
closed_txns : pd.DataFrame
197+
Transactions with closing transactions appended.
198+
"""
199+
200+
closed_txns = transactions.copy()
201+
202+
pos_at_end = positions.drop('cash', axis=1).iloc[-1]
203+
open_pos = pos_at_end.replace(0, np.nan).dropna()
204+
# Add closing trades one second after the close to be sure
205+
# they don't conflict with other trades executed at that time.
206+
end_dt = open_pos.name + pd.Timedelta(seconds=1)
207+
208+
for sym, ending_val in open_pos.iteritems():
209+
txn_sym = transactions[transactions.symbol == sym]
210+
211+
ending_amount = txn_sym.amount.sum()
212+
213+
ending_price = ending_val / ending_amount
214+
closing_txn = {'symbol': sym,
215+
'amount': -ending_amount,
216+
'price': ending_price}
217+
218+
closing_txn = pd.DataFrame(closing_txn, index=[end_dt])
219+
closed_txns = closed_txns.append(closing_txn)
220+
221+
return closed_txns
222+
223+
224+
def apply_sector_mappings_to_round_trips(round_trips, sector_mappings):
225+
"""
226+
Translates round trip symbols to sectors.
227+
228+
Parameters
229+
----------
230+
round_trips : pd.DataFrame
231+
DataFrame with one row per round trip trade.
232+
- See full explanation in round_trips.extract_round_trips
233+
sector_mappings : dict or pd.Series, optional
234+
Security identifier to sector mapping.
235+
Security ids as keys, sectors as values.
236+
237+
Returns
238+
-------
239+
sector_round_trips : pd.DataFrame
240+
Round trips with symbol names replaced by sector names.
241+
"""
242+
243+
sector_round_trips = round_trips.copy()
244+
sector_round_trips.symbol = sector_round_trips.symbol.apply(
245+
lambda x: sector_mappings.get(x, 'No Sector Mapping'))
246+
sector_round_trips = sector_round_trips.dropna(axis=0)
247+
248+
return sector_round_trips

‎pyfolio/tears.py

+106-8
Original file line numberDiff line numberDiff line change
@@ -20,6 +20,7 @@
2020
from . import utils
2121
from . import pos
2222
from . import txn
23+
from . import round_trips
2324
from . import plotting
2425
from .plotting import plotting_context
2526

@@ -167,6 +168,9 @@ def create_full_tear_sheet(returns, positions=None, transactions=None,
167168
unadjusted_returns=unadjusted_returns,
168169
set_context=set_context)
169170

171+
create_round_trip_tear_sheet(transactions, positions,
172+
sector_mappings=sector_mappings)
173+
170174
if bayesian:
171175
create_bayesian_tear_sheet(returns,
172176
live_start_date=live_start_date,
@@ -402,12 +406,12 @@ def create_position_tear_sheet(returns, positions, gross_lev=None,
402406

403407
if sector_mappings is not None:
404408
sector_exposures = pos.get_sector_exposures(positions, sector_mappings)
405-
406-
sector_alloc = pos.get_percent_alloc(sector_exposures)
407-
sector_alloc = sector_alloc.drop('cash', axis='columns')
408-
ax_sector_alloc = plt.subplot(gs[4, :], sharex=ax_gross_leverage)
409-
plotting.plot_sector_allocations(returns, sector_alloc,
410-
ax=ax_sector_alloc)
409+
if len(sector_exposures.columns) > 1:
410+
sector_alloc = pos.get_percent_alloc(sector_exposures)
411+
sector_alloc = sector_alloc.drop('cash', axis='columns')
412+
ax_sector_alloc = plt.subplot(gs[4, :], sharex=ax_gross_leverage)
413+
plotting.plot_sector_allocations(returns, sector_alloc,
414+
ax=ax_sector_alloc)
411415

412416
plt.show()
413417
if return_fig:
@@ -435,8 +439,6 @@ def create_txn_tear_sheet(returns, positions, transactions,
435439
- See full explanation in create_full_tear_sheet.
436440
return_fig : boolean, optional
437441
If True, returns the figure that was plotted on.
438-
set_context : boolean, optional
439-
If True, set default plotting style context.
440442
"""
441443
vertical_sections = 5 if unadjusted_returns is not None else 3
442444

@@ -479,6 +481,102 @@ def create_txn_tear_sheet(returns, positions, transactions,
479481
return fig
480482

481483

484+
@plotting_context
485+
def create_round_trip_tear_sheet(transactions, positions,
486+
sector_mappings=None,
487+
return_fig=False):
488+
"""
489+
Generate a number of figures and plots describing the duration,
490+
frequency, and profitability of trade "round trips."
491+
A round trip is started when a new long or short position is
492+
opened and is only completed when the number of shares in that
493+
position returns to or crosses zero.
494+
495+
Parameters
496+
----------
497+
positions : pd.DataFrame
498+
Daily net position values.
499+
- See full explanation in create_full_tear_sheet.
500+
transactions : pd.DataFrame
501+
Prices and amounts of executed trades. One row per trade.
502+
- See full explanation in create_full_tear_sheet.
503+
sector_mappings : dict or pd.Series, optional
504+
Security identifier to sector mapping.
505+
Security ids as keys, sectors as values.
506+
return_fig : boolean, optional
507+
If True, returns the figure that was plotted on.
508+
"""
509+
510+
transactions_closed = round_trips.add_closing_transactions(positions,
511+
transactions)
512+
trades = round_trips.extract_round_trips(transactions_closed)
513+
514+
if len(trades) < 5:
515+
warnings.warn(
516+
"""Fewer than 5 round-trip trades made.
517+
Skipping round trip tearsheet.""", UserWarning)
518+
return
519+
520+
ndays = len(positions)
521+
522+
print(trades.drop(['open_dt', 'close_dt', 'symbol'],
523+
axis='columns').describe())
524+
print('Percent of round trips profitable = {:.4}%'.format(
525+
(trades.pnl > 0).mean() * 100))
526+
527+
winning_round_trips = trades[trades.pnl > 0]
528+
losing_round_trips = trades[trades.pnl < 0]
529+
print('Mean return per winning round trip = {:.4}'.format(
530+
winning_round_trips.returns.mean()))
531+
print('Mean return per losing round trip = {:.4}').format(
532+
losing_round_trips.returns.mean())
533+
534+
print('A decision is made every {:.4} days.'.format(ndays / len(trades)))
535+
print('{:.4} trading decisions per day.'.format(len(trades) * 1. / ndays))
536+
print('{:.4} trading decisions per month.'.format(
537+
len(trades) * 1. / (ndays / 21)))
538+
539+
plotting.show_profit_attribution(trades)
540+
541+
if sector_mappings is not None:
542+
sector_trades = round_trips.apply_sector_mappings_to_round_trips(
543+
trades, sector_mappings)
544+
plotting.show_profit_attribution(sector_trades)
545+
546+
fig = plt.figure(figsize=(14, 3 * 6))
547+
548+
fig = plt.figure(figsize=(14, 3 * 6))
549+
gs = gridspec.GridSpec(3, 2, wspace=0.5, hspace=0.5)
550+
551+
ax_trade_lifetimes = plt.subplot(gs[0, :])
552+
ax_prob_profit_trade = plt.subplot(gs[1, 0])
553+
ax_holding_time = plt.subplot(gs[1, 1])
554+
ax_pnl_per_round_trip_dollars = plt.subplot(gs[2, 0])
555+
ax_pnl_per_round_trip_pct = plt.subplot(gs[2, 1])
556+
557+
plotting.plot_round_trip_life_times(trades, ax=ax_trade_lifetimes)
558+
559+
plotting.plot_prob_profit_trade(trades, ax=ax_prob_profit_trade)
560+
561+
trade_holding_times = [x.days for x in trades['duration']]
562+
sns.distplot(trade_holding_times, kde=False, ax=ax_holding_time)
563+
ax_holding_time.set(xlabel='holding time in days')
564+
565+
sns.distplot(trades.pnl, kde=False, ax=ax_pnl_per_round_trip_dollars)
566+
ax_pnl_per_round_trip_dollars.set(xlabel='PnL per round-trip trade in $')
567+
568+
pnl_pct = trades.pnl / trades.pnl.sum() * 100
569+
sns.distplot(pnl_pct, kde=False, ax=ax_pnl_per_round_trip_pct)
570+
ax_pnl_per_round_trip_pct.set(
571+
xlabel='PnL per round-trip trade in % of total profit')
572+
573+
gs.tight_layout(fig)
574+
575+
plt.show()
576+
if return_fig:
577+
return fig
578+
579+
482580
@plotting_context
483581
def create_interesting_times_tear_sheet(
484582
returns, benchmark_rets=None, legend_loc='best', return_fig=False):
14.4 KB
Binary file not shown.
71.3 KB
Binary file not shown.
16 KB
Binary file not shown.
136 KB
Binary file not shown.

‎pyfolio/tests/test_round_trips.py

+115
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,115 @@
1+
from nose_parameterized import parameterized
2+
3+
from unittest import TestCase
4+
5+
from pandas import (
6+
DataFrame,
7+
DatetimeIndex,
8+
date_range,
9+
Timedelta,
10+
read_csv
11+
)
12+
from pandas.util.testing import (assert_frame_equal)
13+
14+
import os
15+
import gzip
16+
17+
from pyfolio.round_trips import (extract_round_trips,
18+
add_closing_transactions)
19+
20+
21+
class RoundTripTestCase(TestCase):
22+
dates = date_range(start='2015-01-01', freq='D', periods=20)
23+
24+
@parameterized.expand([
25+
(DataFrame(data=[[2, 10, 'A'],
26+
[-2, 15, 'A']],
27+
columns=['amount', 'price', 'symbol'],
28+
index=dates[:2]),
29+
DataFrame(data=[[dates[0], dates[1],
30+
Timedelta(days=1), 10, .5,
31+
True, 'A']],
32+
columns=['open_dt', 'close_dt',
33+
'duration', 'pnl', 'returns',
34+
'long', 'symbol'],
35+
index=[0])
36+
),
37+
(DataFrame(data=[[2, 10, 'A'],
38+
[2, 15, 'A'],
39+
[-9, 10, 'A']],
40+
columns=['amount', 'price', 'symbol'],
41+
index=dates[:3]),
42+
DataFrame(data=[[dates[0], dates[2],
43+
Timedelta(days=2), -10, -.2,
44+
True, 'A']],
45+
columns=['open_dt', 'close_dt',
46+
'duration', 'pnl', 'returns',
47+
'long', 'symbol'],
48+
index=[0])
49+
),
50+
(DataFrame(data=[[2, 10, 'A'],
51+
[-4, 15, 'A'],
52+
[3, 20, 'A']],
53+
columns=['amount', 'price', 'symbol'],
54+
index=dates[:3]),
55+
DataFrame(data=[[dates[0], dates[1],
56+
Timedelta(days=1), 10, .5,
57+
True, 'A'],
58+
[dates[1] + Timedelta(seconds=1), dates[2],
59+
Timedelta(days=1) - Timedelta(seconds=1),
60+
-10, (-1. / 3),
61+
False, 'A']],
62+
columns=['open_dt', 'close_dt',
63+
'duration', 'pnl', 'returns',
64+
'long', 'symbol'],
65+
index=[0, 1])
66+
)
67+
])
68+
def test_extract_round_trips(self, transactions, expected):
69+
round_trips = extract_round_trips(transactions)
70+
71+
assert_frame_equal(round_trips, expected)
72+
73+
def test_add_closing_trades(self):
74+
dates = date_range(start='2015-01-01', periods=20)
75+
transactions = DataFrame(data=[[2, 10, 'A'],
76+
[-5, 10, 'A'],
77+
[-1, 10, 'B']],
78+
columns=['amount', 'price', 'symbol'],
79+
index=[dates[:3]])
80+
positions = DataFrame(data=[[20, 10, 0],
81+
[-30, 10, 30],
82+
[-60, 0, 30]],
83+
columns=['A', 'B', 'cash'],
84+
index=[dates[:3]])
85+
86+
expected_ix = dates[:3].append(DatetimeIndex([dates[2] +
87+
Timedelta(seconds=1)]))
88+
expected = DataFrame(data=[[2, 10, 'A'],
89+
[-5, 10, 'A'],
90+
[-1, 10., 'B'],
91+
[3, 20., 'A']],
92+
columns=['amount', 'price', 'symbol'],
93+
index=expected_ix)
94+
95+
transactions_closed = add_closing_transactions(positions, transactions)
96+
assert_frame_equal(transactions_closed, expected)
97+
98+
def test_txn_pnl_matches_round_trip_pnl(self):
99+
__location__ = os.path.realpath(
100+
os.path.join(os.getcwd(), os.path.dirname(__file__)))
101+
102+
test_txn = read_csv(gzip.open(
103+
__location__ + '/test_data/test_txn.csv.gz'),
104+
index_col=0, parse_dates=0)
105+
test_pos = read_csv(gzip.open(
106+
__location__ + '/test_data/test_pos.csv.gz'),
107+
index_col=0, parse_dates=0)
108+
109+
transactions_closed = add_closing_transactions(test_pos, test_txn)
110+
transactions_closed['txn_dollars'] = transactions_closed.amount * \
111+
-1. * transactions_closed.price
112+
round_trips = extract_round_trips(transactions_closed)
113+
114+
self.assertAlmostEqual(round_trips.pnl.sum(),
115+
transactions_closed.txn_dollars.sum())

‎pyfolio/txn.py

+1-44
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,6 @@
1414
# limitations under the License.
1515
from __future__ import division
1616

17-
from collections import defaultdict
18-
1917
import pandas as pd
2018

2119

@@ -39,7 +37,7 @@ def map_transaction(txn):
3937
symbol = txn['sid']['symbol']
4038
else:
4139
sid = txn['sid']
42-
symbol = None
40+
symbol = txn['sid']
4341

4442
return {'sid': sid,
4543
'symbol': symbol,
@@ -134,47 +132,6 @@ def adjust_returns_for_slippage(returns, turnover, slippage_bps):
134132
return trim_returns - turnover * slippage
135133

136134

137-
def create_txn_profits(transactions):
138-
"""
139-
Compute per-trade profits.
140-
141-
Generates a new transactions DataFrame with a profits column
142-
143-
Parameters
144-
----------
145-
transactions : pd.DataFrame
146-
Daily transaction volume and number of shares.
147-
- See full explanation in tears.create_full_tear_sheet.
148-
149-
Returns
150-
-------
151-
profits_dts : pd.DataFrame
152-
DataFrame containing transactions and their profits, datetimes,
153-
amounts, current prices, prior prices, and symbols.
154-
"""
155-
156-
txn_descr = defaultdict(list)
157-
158-
for symbol, transactions_sym in transactions.groupby('symbol'):
159-
transactions_sym = transactions_sym.reset_index()
160-
161-
for i, (amount, price, dt) in transactions_sym.iloc[1:][
162-
['amount', 'price', 'date_time_utc']].iterrows():
163-
prev_amount, prev_price, prev_dt = transactions_sym.loc[
164-
i - 1, ['amount', 'price', 'date_time_utc']]
165-
profit = (price - prev_price) * -amount
166-
txn_descr['profits'].append(profit)
167-
txn_descr['dts'].append(dt - prev_dt)
168-
txn_descr['amounts'].append(amount)
169-
txn_descr['prices'].append(price)
170-
txn_descr['prev_prices'].append(prev_price)
171-
txn_descr['symbols'].append(symbol)
172-
173-
profits_dts = pd.DataFrame(txn_descr)
174-
175-
return profits_dts
176-
177-
178135
def get_turnover(transactions, positions, period=None, average=True):
179136
"""
180137
Portfolio Turnover Rate:

0 commit comments

Comments
 (0)
Please sign in to comment.