|
23 | 23 | import matplotlib.pyplot as plt
|
24 | 24 | from matplotlib.ticker import FuncFormatter
|
25 | 25 | import matplotlib.lines as mlines
|
| 26 | +from matplotlib import figure |
| 27 | +from matplotlib.backends.backend_agg import FigureCanvasAgg |
26 | 28 |
|
27 | 29 | from sklearn import preprocessing
|
28 | 30 |
|
@@ -1660,3 +1662,102 @@ def plot_prob_profit_trade(round_trips, ax=None):
|
1660 | 1662 | xlim=(lower_plot, upper_plot), ylim=(0, y.max() + 1.))
|
1661 | 1663 |
|
1662 | 1664 | return ax
|
| 1665 | + |
| 1666 | + |
| 1667 | +def plot_multistrike_cones(is_returns, oos_returns, num_samples=1000, |
| 1668 | + name=None, ax=None, cone_std=(1., 1.5, 2.), |
| 1669 | + random_seed=None, num_strikes=0): |
| 1670 | + """ |
| 1671 | + Plots the upper and lower bounds of an n standard deviation |
| 1672 | + cone of forecasted cumulative returns. This cone is non-parametric, |
| 1673 | + meaning it does not assume that returns are normally distributed. Redraws |
| 1674 | + a new cone when returns fall outside of last cone drawn. |
| 1675 | +
|
| 1676 | + Parameters |
| 1677 | + ---------- |
| 1678 | + is_returns : pandas.core.frame.DataFrame |
| 1679 | + Non-cumulative in-sample returns. |
| 1680 | + oos_returns : pandas.core.frame.DataFrame |
| 1681 | + Non-cumulative out-of-sample returns. |
| 1682 | + num_samples : int |
| 1683 | + Number of samples to draw from the in-sample daily returns. |
| 1684 | + Each sample will be an array with length num_days. |
| 1685 | + A higher number of samples will generate a more accurate |
| 1686 | + bootstrap cone. |
| 1687 | + name : str, optional |
| 1688 | + Plot title |
| 1689 | + ax : matplotlib.Axes, optional |
| 1690 | + Axes upon which to plot. |
| 1691 | + cone_std : list of int/float |
| 1692 | + Number of standard devations to use in the boundaries of |
| 1693 | + the cone. If multiple values are passed, cone bounds will |
| 1694 | + be generated for each value. |
| 1695 | + random_seed : int |
| 1696 | + Seed for the pseudorandom number generator used by the pandas |
| 1697 | + sample method. |
| 1698 | + num_strikes : int |
| 1699 | + Upper limit for number of cones drawn. Can be anything from 0 to 3. |
| 1700 | +
|
| 1701 | +
|
| 1702 | + Returns |
| 1703 | + ------- |
| 1704 | + Returns are either an ax or fig option, but not both. If a |
| 1705 | + matplotlib.Axes instance is passed in as ax, then it will be modified |
| 1706 | + and returned. This allows for users to plot interactively in jupyter |
| 1707 | + notebook. When no ax object is passed in, a matplotlib.figure instance |
| 1708 | + is generated and returned. This figure can then be used to save |
| 1709 | + the plot as an image without viewing it. |
| 1710 | +
|
| 1711 | + ax : matplotlib.Axes |
| 1712 | + The axes that were plotted on. |
| 1713 | + fig : matplotlib.figure |
| 1714 | + The figure instance which contains all the plot elements. |
| 1715 | + """ |
| 1716 | + if ax is None: |
| 1717 | + fig = figure.Figure(figsize=(10, 8)) |
| 1718 | + FigureCanvasAgg(fig) |
| 1719 | + axes = fig.add_subplot(111) |
| 1720 | + else: |
| 1721 | + axes = ax |
| 1722 | + |
| 1723 | + returns = timeseries.cum_returns(oos_returns, starting_value=1.) |
| 1724 | + bounds = timeseries.forecast_cone_bootstrap(is_returns, |
| 1725 | + len(oos_returns), |
| 1726 | + cone_std=cone_std, |
| 1727 | + num_samples=num_samples, |
| 1728 | + random_seed=random_seed) |
| 1729 | + bounds.index = oos_returns.index |
| 1730 | + bounds_tmp = bounds.copy() |
| 1731 | + returns_tmp = returns.copy() |
| 1732 | + cone_start = returns.index[0] |
| 1733 | + colors = ["green", "orange", "orangered", "darkred"] |
| 1734 | + |
| 1735 | + for c in range(num_strikes+1): |
| 1736 | + if c > 0: |
| 1737 | + tmp = returns.loc[cone_start:] |
| 1738 | + crossing = (tmp < bounds_tmp[float(-2.)].iloc[:len(tmp)]) |
| 1739 | + if crossing.sum() <= 0: |
| 1740 | + break |
| 1741 | + cone_start = crossing.loc[crossing].index[0] |
| 1742 | + returns_tmp = oos_returns.loc[cone_start:] |
| 1743 | + bounds_tmp = (bounds - (1 - returns.loc[cone_start])) |
| 1744 | + for std in cone_std: |
| 1745 | + x = returns_tmp.index |
| 1746 | + y1 = bounds_tmp[float(std)].iloc[:len(returns_tmp)] |
| 1747 | + y2 = bounds_tmp[float(-std)].iloc[:len(returns_tmp)] |
| 1748 | + ax.fill_between(x, y1, y2, color=colors[c], alpha=0.5) |
| 1749 | + # Plot returns line graph |
| 1750 | + returns.plot(ax=axes, |
| 1751 | + lw=3., |
| 1752 | + color='black', |
| 1753 | + label='Cumulative returns = {:.2f}%'.format( |
| 1754 | + (returns.iloc[-1] - 1) * 100)) |
| 1755 | + if name is not None: |
| 1756 | + axes.set_title(name) |
| 1757 | + axes.axhline(1, color='black', alpha=0.2) |
| 1758 | + axes.legend() |
| 1759 | + |
| 1760 | + if ax is None: |
| 1761 | + return fig |
| 1762 | + else: |
| 1763 | + return axes |
0 commit comments