12
12
import timeseries
13
13
import positions
14
14
15
+
15
16
def set_plot_defaults ():
16
17
# the below just sets some nice default plotting/charting colors/styles
17
18
matplotlib .style .use ('fivethirtyeight' )
@@ -27,7 +28,7 @@ def plot_rolling_risk_factors(
27
28
df_cum_rets ,
28
29
df_rets ,
29
30
risk_factors ,
30
- rolling_beta_window = 63 * 2 ,
31
+ rolling_beta_window = 63 * 2 ,
31
32
legend_loc = 'best' ):
32
33
from matplotlib .ticker import FuncFormatter
33
34
y_axis_formatter = FuncFormatter (utils .one_dec_places )
@@ -95,7 +96,7 @@ def plot_rolling_risk_factors(
95
96
plt .axhline (0.0 , color = 'black' )
96
97
97
98
plt .ylabel ('alpha' , fontsize = 14 )
98
- plt .xlim ( (df_rets .index [0 ], df_rets .index [- 1 ]) )
99
+ plt .xlim ((df_rets .index [0 ], df_rets .index [- 1 ]))
99
100
plt .ylim ((- .40 , .40 ))
100
101
plt .title (
101
102
'Multi-factor Alpha (vs. Factors: Small-Cap, High-Growth, Momentum)' ,
@@ -233,22 +234,22 @@ def plot_holdings(df_pos, end_date=None, legend_loc='best'):
233
234
alpha = 1.0 )
234
235
if end_date is not None :
235
236
plt .xlim ((df_holdings .index [0 ], end_date ))
236
-
237
+
237
238
plt .legend (['Daily holdings' ,
238
239
'Average daily holdings, by month' ,
239
240
'Average daily holdings, net' ],
240
241
loc = legend_loc )
241
242
plt .title ('# of Holdings Per Day' )
242
-
243
+
243
244
244
245
def plot_drawdowns (df_rets , df_cum_rets = None , top = 10 ):
245
246
df_drawdowns = timeseries .gen_drawdown_table (df_rets )
246
-
247
+
247
248
# df_cum_rets - 1 = cum_returns when startingvalue=None
248
-
249
+
249
250
if df_cum_rets is None :
250
251
df_cum_rets = timeseries .cum_returns (df_rets , starting_value = 1 )
251
-
252
+
252
253
running_max = np .maximum .accumulate (df_cum_rets - 1 )
253
254
underwater = running_max - (df_cum_rets - 1 )
254
255
fig , (ax1 , ax2 ) = plt .subplots (nrows = 2 , figsize = (13 , 6 ))
@@ -273,26 +274,32 @@ def plot_drawdowns(df_rets, df_cum_rets=None, top=10):
273
274
274
275
275
276
def show_perf_stats (df_rets , algo_create_date , benchmark_rets ):
276
- df_rets_backtest = df_rets [ df_rets .index < algo_create_date ]
277
- df_rets_live = df_rets [ df_rets .index > algo_create_date ]
277
+ df_rets_backtest = df_rets [df_rets .index < algo_create_date ]
278
+ df_rets_live = df_rets [df_rets .index > algo_create_date ]
278
279
279
- print 'Out-of-Sample Months: ' + str ( int ( len (df_rets_live ) / 21 ) )
280
- print 'Backtest Months: ' + str ( int ( len (df_rets_backtest ) / 21 ) )
280
+ print 'Out-of-Sample Months: ' + str (int (len (df_rets_live ) / 21 ))
281
+ print 'Backtest Months: ' + str (int (len (df_rets_backtest ) / 21 ))
281
282
282
- perf_stats_backtest = np .round (timeseries .perf_stats (df_rets_backtest , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
283
- perf_stats_backtest_ab = np .round (timeseries .calc_alpha_beta (df_rets_backtest , benchmark_rets ), 2 )
283
+ perf_stats_backtest = np .round (timeseries .perf_stats (
284
+ df_rets_backtest , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
285
+ perf_stats_backtest_ab = np .round (
286
+ timeseries .calc_alpha_beta (df_rets_backtest , benchmark_rets ), 2 )
284
287
perf_stats_backtest .loc ['alpha' ] = perf_stats_backtest_ab [0 ]
285
288
perf_stats_backtest .loc ['beta' ] = perf_stats_backtest_ab [1 ]
286
289
perf_stats_backtest .columns = ['Backtest' ]
287
290
288
- perf_stats_live = np .round (timeseries .perf_stats (df_rets_live , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
289
- perf_stats_live_ab = np .round (timeseries .calc_alpha_beta (df_rets_live , benchmark_rets ), 2 )
291
+ perf_stats_live = np .round (timeseries .perf_stats (
292
+ df_rets_live , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
293
+ perf_stats_live_ab = np .round (
294
+ timeseries .calc_alpha_beta (df_rets_live , benchmark_rets ), 2 )
290
295
perf_stats_live .loc ['alpha' ] = perf_stats_live_ab [0 ]
291
296
perf_stats_live .loc ['beta' ] = perf_stats_live_ab [1 ]
292
297
perf_stats_live .columns = ['Out_of_Sample' ]
293
298
294
- perf_stats_all = np .round (timeseries .perf_stats (df_rets , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
295
- perf_stats_all_ab = np .round (timeseries .calc_alpha_beta (df_rets , benchmark_rets ), 2 )
299
+ perf_stats_all = np .round (timeseries .perf_stats (
300
+ df_rets , inputIsNAV = False , returns_style = 'arithmetic' ), 2 )
301
+ perf_stats_all_ab = np .round (
302
+ timeseries .calc_alpha_beta (df_rets , benchmark_rets ), 2 )
296
303
perf_stats_all .loc ['alpha' ] = perf_stats_all_ab [0 ]
297
304
perf_stats_all .loc ['beta' ] = perf_stats_all_ab [1 ]
298
305
perf_stats_all .columns = ['All_History' ]
@@ -302,15 +309,18 @@ def show_perf_stats(df_rets, algo_create_date, benchmark_rets):
302
309
303
310
print perf_stats_both
304
311
312
+
305
313
def plot_rolling_returns (df_cum_rets , df_rets , benchmark_rets , benchmark2_rets , algo_create_date , timeseries_input_only = True , legend_loc = 'best' ):
306
314
#future_cone_stdev = 1.5
307
315
308
316
y_axis_formatter = FuncFormatter (utils .one_dec_places )
309
- fig = plt .figure (figsize = (13 ,8 ))
317
+ fig = plt .figure (figsize = (13 , 8 ))
310
318
ax = fig .add_subplot (111 )
311
319
ax .yaxis .set_major_formatter (FuncFormatter (y_axis_formatter ))
312
- timeseries .cum_returns (benchmark_rets [df_cum_rets .index ], 1.0 ).plot (ax = ax , lw = 2 , color = 'gray' , label = '' , alpha = 0.60 )
313
- timeseries .cum_returns (benchmark2_rets [df_cum_rets .index ], 1.0 ).plot (ax = ax , lw = 2 , color = 'gray' , label = '' , alpha = 0.35 )
320
+ timeseries .cum_returns (benchmark_rets [df_cum_rets .index ], 1.0 ).plot (
321
+ ax = ax , lw = 2 , color = 'gray' , label = '' , alpha = 0.60 )
322
+ timeseries .cum_returns (benchmark2_rets [df_cum_rets .index ], 1.0 ).plot (
323
+ ax = ax , lw = 2 , color = 'gray' , label = '' , alpha = 0.35 )
314
324
315
325
if not timeseries_input_only and df_cum_rets .index [- 1 ] <= algo_create_date :
316
326
df_cum_rets .plot (lw = 3 , color = 'forestgreen' , label = '' , alpha = 0.6 )
@@ -319,8 +329,10 @@ def plot_rolling_returns(df_cum_rets, df_rets, benchmark_rets, benchmark2_rets,
319
329
'Algo backtest' ],
320
330
loc = legend_loc )
321
331
else :
322
- df_cum_rets [:algo_create_date ].plot (lw = 3 , color = 'forestgreen' , label = '' , alpha = 0.6 )
323
- df_cum_rets [algo_create_date :].plot (lw = 4 , color = 'red' , label = '' , alpha = 0.6 )
332
+ df_cum_rets [:algo_create_date ].plot (
333
+ lw = 3 , color = 'forestgreen' , label = '' , alpha = 0.6 )
334
+ df_cum_rets [algo_create_date :].plot (
335
+ lw = 4 , color = 'red' , label = '' , alpha = 0.6 )
324
336
325
337
#cone_df = timeseries.cone_rolling(df_rets, num_stdev=future_cone_stdev, cone_fit_end_date=algo_create_date)
326
338
@@ -333,17 +345,17 @@ def plot_rolling_returns(df_cum_rets, df_rets, benchmark_rets, benchmark2_rets,
333
345
#cone_df_live['line'].plot(ls='--', lw=2, color='coral', alpha=0.7)
334
346
#cone_df_future['line'].plot(ls='--', lw=2, color='navy', alpha=0.7)
335
347
336
- #ax.fill_between(cone_df_live.index,
348
+ # ax.fill_between(cone_df_live.index,
337
349
# cone_df_live.sd_down,
338
350
# cone_df_live.sd_up,
339
351
# color='coral', alpha=0.20)
340
352
341
- #ax.fill_between(cone_df_future.index,
353
+ # ax.fill_between(cone_df_future.index,
342
354
# cone_df_future.sd_down,
343
355
# cone_df_future.sd_up,
344
356
# color='navy', alpha=0.15)
345
357
346
- plt .axhline (1.0 , linestyle = '--' , color = 'black' , lw = 2 )
358
+ plt .axhline (1.0 , linestyle = '--' , color = 'black' , lw = 2 )
347
359
plt .ylabel ('Cumulative returns' , fontsize = 14 )
348
360
plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
349
361
@@ -359,24 +371,27 @@ def plot_rolling_returns(df_cum_rets, df_rets, benchmark_rets, benchmark2_rets,
359
371
'Algo LIVE' ],
360
372
loc = legend_loc )
361
373
374
+
362
375
def plot_rolling_beta (df_cum_rets , df_rets , benchmark_rets , rolling_beta_window = 63 , legend_loc = 'best' ):
363
376
y_axis_formatter = FuncFormatter (utils .one_dec_places )
364
- fig = plt .figure (figsize = (13 ,3 ))
377
+ fig = plt .figure (figsize = (13 , 3 ))
365
378
ax = fig .add_subplot (111 )
366
379
ax .yaxis .set_major_formatter (FuncFormatter (y_axis_formatter ))
367
380
368
- plt .title ("Rolling Portfolio Beta to SP500" ,fontsize = 16 )
381
+ plt .title ("Rolling Portfolio Beta to SP500" , fontsize = 16 )
369
382
plt .ylabel ('beta' , fontsize = 14 )
370
- rb_1 = timeseries .rolling_beta (df_rets , benchmark_rets , rolling_window = rolling_beta_window * 2 )
383
+ rb_1 = timeseries .rolling_beta (
384
+ df_rets , benchmark_rets , rolling_window = rolling_beta_window * 2 )
371
385
rb_1 .plot (color = 'steelblue' , lw = 3 , alpha = 0.6 , ax = ax )
372
- rb_2 = timeseries .rolling_beta (df_rets , benchmark_rets , rolling_window = rolling_beta_window * 3 )
386
+ rb_2 = timeseries .rolling_beta (
387
+ df_rets , benchmark_rets , rolling_window = rolling_beta_window * 3 )
373
388
rb_2 .plot (color = 'grey' , lw = 3 , alpha = 0.4 , ax = ax )
374
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
389
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
375
390
plt .ylim ((- 2.5 , 2.5 ))
376
391
plt .axhline (rb_1 .mean (), color = 'steelblue' , linestyle = '--' , lw = 3 )
377
392
plt .axhline (0.0 , color = 'black' , linestyle = '-' , lw = 2 )
378
393
379
- #plt.fill_between(cone_df_future.index,
394
+ # plt.fill_between(cone_df_future.index,
380
395
# rb_1.mean() + future_cone_stdev*np.std(rb_1),
381
396
# rb_1.mean() - future_cone_stdev*np.std(rb_1),
382
397
# color='steelblue', alpha=0.2)
@@ -385,20 +400,23 @@ def plot_rolling_beta(df_cum_rets, df_rets, benchmark_rets, rolling_beta_window=
385
400
'12-mo' ],
386
401
loc = legend_loc )
387
402
388
- def plot_rolling_sharp (df_cum_rets , df_rets , rolling_sharpe_window = 63 * 2 ):
403
+
404
+ def plot_rolling_sharp (df_cum_rets , df_rets , rolling_sharpe_window = 63 * 2 ):
389
405
y_axis_formatter = FuncFormatter (utils .one_dec_places )
390
406
fig = plt .figure (figsize = (13 , 3 ))
391
407
ax = fig .add_subplot (111 )
392
408
ax .yaxis .set_major_formatter (FuncFormatter (y_axis_formatter ))
393
409
394
- rolling_sharpe_ts = timeseries .rolling_sharpe (df_rets , rolling_sharpe_window )
410
+ rolling_sharpe_ts = timeseries .rolling_sharpe (
411
+ df_rets , rolling_sharpe_window )
395
412
rolling_sharpe_ts .plot (alpha = .7 , lw = 3 , color = 'orangered' )
396
413
ax .yaxis .set_major_formatter (FuncFormatter (y_axis_formatter ))
397
414
plt .title ('Rolling Sharpe ratio (6-month)' , fontsize = 16 )
398
- plt .axhline (rolling_sharpe_ts .mean (), color = 'orangered' , linestyle = '--' , lw = 3 )
415
+ plt .axhline (
416
+ rolling_sharpe_ts .mean (), color = 'orangered' , linestyle = '--' , lw = 3 )
399
417
plt .axhline (0.0 , color = 'black' , linestyle = '-' , lw = 3 )
400
418
401
- #plt.fill_between(cone_df_future.index,
419
+ # plt.fill_between(cone_df_future.index,
402
420
# rolling_sharpe_ts.mean() + future_cone_stdev*np.std(rolling_sharpe_ts),
403
421
# rolling_sharpe_ts.mean() - future_cone_stdev*np.std(rolling_sharpe_ts),
404
422
# color='orangered', alpha=0.15)
@@ -407,26 +425,33 @@ def plot_rolling_sharp(df_cum_rets, df_rets, rolling_sharpe_window=63*2):
407
425
plt .ylim ((- 3.0 , 6.0 ))
408
426
plt .ylabel ('Sharpe ratio' , fontsize = 14 )
409
427
428
+
410
429
def plot_gross_leverage (df_cum_rets , gross_lev ):
411
430
fig = plt .figure (figsize = (13 , 3 ))
412
431
gross_lev .plot (alpha = 0.8 , lw = 0.5 , color = 'g' , legend = False )
413
432
#plt.axhline(0.0, color='black', lw=2)
414
- plt .axhline (np .mean (gross_lev .iloc [:,0 ]), color = 'g' , linestyle = '--' , lw = 3 , alpha = 1.0 )
415
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
433
+ plt .axhline (
434
+ np .mean (gross_lev .iloc [:, 0 ]), color = 'g' , linestyle = '--' , lw = 3 , alpha = 1.0 )
435
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
416
436
plt .title ('Gross Leverage' )
417
437
plt .ylabel ('Gross Leverage' , fontsize = 14 )
418
438
439
+
419
440
def plot_exposures (df_cum_rets , df_pos_alloc ):
420
441
fig = plt .figure (figsize = (13 , 3 ))
421
442
df_long_short = positions .get_long_short_pos (df_pos_alloc )
422
- df_long_short .plot (kind = 'area' , color = ['lightblue' ,'green' ,'coral' ], alpha = 1.0 )
423
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
443
+ df_long_short .plot (
444
+ kind = 'area' , color = ['lightblue' , 'green' , 'coral' ], alpha = 1.0 )
445
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
424
446
plt .title ("Long/Short/Cash Exposure" )
425
447
plt .ylabel ('Exposure' , fontsize = 14 )
426
448
449
+
427
450
def show_and_plot_top_positions (df_cum_rets , df_pos_alloc , show_and_plot = 2 ):
428
- # show_and_plot allows for both showing info and plot, or doing only one. plot:0, show:1, both:2 (default 2).
429
- df_top_long , df_top_short , df_top_abs = positions .get_top_long_short_abs (df_pos_alloc )
451
+ # show_and_plot allows for both showing info and plot, or doing only one.
452
+ # plot:0, show:1, both:2 (default 2).
453
+ df_top_long , df_top_short , df_top_abs = positions .get_top_long_short_abs (
454
+ df_pos_alloc )
430
455
431
456
if show_and_plot == 0 or show_and_plot == 2 :
432
457
print "\n "
@@ -445,78 +470,94 @@ def show_and_plot_top_positions(df_cum_rets, df_pos_alloc, show_and_plot=2):
445
470
print np .round (pd .DataFrame (df_top_abs )[0 ].values , 3 )
446
471
print "\n "
447
472
448
- _ , _ , df_top_abs_all = positions .get_top_long_short_abs (df_pos_alloc , top = 1000 )
473
+ _ , _ , df_top_abs_all = positions .get_top_long_short_abs (
474
+ df_pos_alloc , top = 1000 )
449
475
print 'All positions ever held'
450
476
print pd .DataFrame (df_top_abs_all ).index .values
451
477
print np .round (pd .DataFrame (df_top_abs_all )[0 ].values , 3 )
452
478
print "\n "
453
479
454
480
if show_and_plot == 1 or show_and_plot == 2 :
455
481
fig = plt .figure (figsize = (13 , 3 ))
456
- df_pos_alloc [df_top_abs .index ].plot (title = 'Portfolio allocation over time, only top 10 holdings' , alpha = 0.4 )#kind='area')
482
+ df_pos_alloc [df_top_abs .index ].plot (
483
+ title = 'Portfolio allocation over time, only top 10 holdings' , alpha = 0.4 ) # kind='area')
457
484
plt .ylabel ('Exposure by Stock' , fontsize = 14 )
458
485
# plt.figure(figsize=(13, 6))
459
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
486
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
487
+
460
488
461
489
def plot_return_quantiles (df_rets , df_weekly , df_monthly ):
462
490
fig = plt .figure (figsize = (13 , 6 ))
463
- sns .boxplot ([df_rets , df_weekly , df_monthly ], names = ['daily' , 'weekly' , 'monthly' ])
491
+ sns .boxplot ([df_rets , df_weekly , df_monthly ],
492
+ names = ['daily' , 'weekly' , 'monthly' ])
464
493
plt .title ('Return quantiles' )
465
494
495
+
466
496
def show_return_range (df_rets , df_weekly ):
467
- var_daily = timeseries .var_cov_var_normal (1e7 , .05 , df_rets .mean (), df_rets .std ())
468
- var_weekly = timeseries .var_cov_var_normal (1e7 , .05 , df_weekly .mean (), df_weekly .std ())
469
- two_sigma_daily = df_rets .mean () - 2 * df_rets .std ()
470
- two_sigma_weekly = df_weekly .mean () - 2 * df_weekly .std ()
497
+ var_daily = timeseries .var_cov_var_normal (
498
+ 1e7 , .05 , df_rets .mean (), df_rets .std ())
499
+ var_weekly = timeseries .var_cov_var_normal (
500
+ 1e7 , .05 , df_weekly .mean (), df_weekly .std ())
501
+ two_sigma_daily = df_rets .mean () - 2 * df_rets .std ()
502
+ two_sigma_weekly = df_weekly .mean () - 2 * df_weekly .std ()
471
503
472
504
var_sigma = pd .Series ([two_sigma_daily , two_sigma_weekly ],
473
505
index = ['2-sigma returns daily' , '2-sigma returns weekly' ])
474
506
475
507
print np .round (var_sigma , 3 )
476
508
509
+
477
510
def plot_interesting_times (df_rets , benchmark_rets , legend_loc = 'best' ):
478
511
rets_interesting = timeseries .extract_interesting_date_ranges (df_rets )
479
512
print '\n Stress Events'
480
- print np .round (pd .DataFrame (rets_interesting ).describe ().transpose ().loc [:,['mean' ,'min' ,'max' ]], 3 )
513
+ print np .round (pd .DataFrame (rets_interesting ).describe ().transpose ().loc [:, ['mean' , 'min' , 'max' ]], 3 )
481
514
482
- bmark_interesting = timeseries .extract_interesting_date_ranges (benchmark_rets )
515
+ bmark_interesting = timeseries .extract_interesting_date_ranges (
516
+ benchmark_rets )
483
517
484
- fig = plt .figure (figsize = (31 ,19 ))
518
+ fig = plt .figure (figsize = (31 , 19 ))
485
519
for i , (name , rets_period ) in enumerate (rets_interesting .iteritems ()):
486
- ax = fig .add_subplot (6 , 3 , i + 1 )
487
- timeseries .cum_returns (rets_period ).plot (ax = ax , color = 'forestgreen' , label = 'algo' , alpha = 0.7 , lw = 2 )
488
- timeseries .cum_returns (bmark_interesting [name ]).plot (ax = ax , color = 'gray' , label = 'SPY' , alpha = 0.6 )
520
+ ax = fig .add_subplot (6 , 3 , i + 1 )
521
+ timeseries .cum_returns (rets_period ).plot (
522
+ ax = ax , color = 'forestgreen' , label = 'algo' , alpha = 0.7 , lw = 2 )
523
+ timeseries .cum_returns (bmark_interesting [name ]).plot (
524
+ ax = ax , color = 'gray' , label = 'SPY' , alpha = 0.6 )
489
525
plt .legend (['algo' ,
490
526
'SPY' ],
491
527
loc = legend_loc )
492
528
ax .set_title (name , size = 14 )
493
529
ax .set_ylabel ('' , size = 12 )
494
530
ax .legend ()
495
531
532
+
496
533
def plot_turnover (df_cum_rets , df_txn , df_pos_val , legend_loc = 'best' ):
497
534
fig = plt .figure (figsize = (13 , 4 ))
498
535
df_turnover = df_txn .txn_volume / df_pos_val .abs ().sum (axis = 'columns' )
499
536
df_turnover_by_month = df_turnover .resample ('1M' , how = 'mean' )
500
537
df_turnover .plot (color = 'steelblue' , alpha = 1.0 , lw = 0.5 )
501
538
df_turnover_by_month .plot (color = 'orangered' , alpha = 0.5 , lw = 2 )
502
- plt .axhline (df_turnover .mean (), color = 'steelblue' , linestyle = '--' , lw = 3 , alpha = 1.0 )
539
+ plt .axhline (
540
+ df_turnover .mean (), color = 'steelblue' , linestyle = '--' , lw = 3 , alpha = 1.0 )
503
541
plt .legend (['Daily turnover' ,
504
542
'Average daily turnover, by month' ,
505
543
'Average daily turnover, net' ],
506
544
loc = legend_loc )
507
545
plt .title ('Daily turnover' )
508
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
546
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
509
547
plt .ylim ((0 , 1 ))
510
548
plt .ylabel ('% turn-over' )
511
549
550
+
512
551
def plot_daily_volume (df_cum_rets , df_txn ):
513
552
fig = plt .figure (figsize = (13 , 4 ))
514
553
df_txn .txn_shares .plot (alpha = 1.0 , lw = 0.5 )
515
- plt .axhline (df_txn .txn_shares .mean (), color = 'steelblue' , linestyle = '--' , lw = 3 , alpha = 1.0 )
554
+ plt .axhline (df_txn .txn_shares .mean (), color = 'steelblue' ,
555
+ linestyle = '--' , lw = 3 , alpha = 1.0 )
516
556
plt .title ('Daily volume traded' )
517
- plt .xlim ( (df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]) )
557
+ plt .xlim ((df_cum_rets .index [0 ], df_cum_rets .index [- 1 ]))
518
558
plt .ylabel ('# shares traded' )
519
559
560
+
520
561
def plot_volume_per_day_hist (df_txn ):
521
562
fig = plt .figure (figsize = (13 , 4 ))
522
563
sns .distplot (df_txn .txn_volume )
0 commit comments