Skip to content

Commit f0e8afc

Browse files
twieckigusgordon
authored andcommitted
Fix #385 among other things (#395)
* replaced yahoo backend with google for market data * flake8 syntax * Datareader compatibility If datareader doesn't work, trying older version https://pandas.pydata.org/pandas-docs/stable/remote_data.html * Fix shape mismatch issue in bayesian regression. * Update to pymc3 3.1. * Fix yahoo finance reader problem by fallback to google. * Reference empyrical functions where possible * Update tests to new pandas version. * flake8, fix test, don't count turnover on weekends * flake8 * fix test (NaT)
1 parent a34222e commit f0e8afc

7 files changed

+53
-73
lines changed

pyfolio/bayesian.py

+16-45
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,6 @@
1818
import pandas as pd
1919
import scipy as sp
2020
from scipy import stats
21-
import theano.tensor as tt
2221

2322
import matplotlib.pyplot as plt
2423

@@ -66,43 +65,28 @@ def model_returns_t_alpha_beta(data, bmark, samples=2000):
6665
of the posterior.
6766
"""
6867

69-
if data.shape[0] != bmark.shape[0]:
70-
data = pd.Series(data, index=bmark.index)
71-
72-
data_no_missing = data.dropna()
73-
74-
if bmark.ndim == 1:
75-
bmark = pd.DataFrame(bmark)
76-
77-
bmark = bmark.loc[data_no_missing.index]
78-
n_bmark = bmark.shape[1]
68+
data_bmark = pd.concat([data, bmark], axis='columns').dropna()
7969

8070
with pm.Model() as model:
8171
sigma = pm.HalfCauchy(
8272
'sigma',
83-
beta=1,
84-
testval=data_no_missing.values.std())
85-
nu = pm.Exponential('nu_minus_two', 1. / 10., testval=.3)
73+
beta=1)
74+
nu = pm.Exponential('nu_minus_two', 1. / 10.)
8675

8776
# alpha and beta
88-
X = bmark.loc[data_no_missing.index]
89-
X.loc[:, 'ones'] = 1.
90-
y = data_no_missing
91-
alphabeta_init = np.linalg.lstsq(X, y)[0]
92-
93-
alpha_reg = pm.Normal('alpha', mu=0, sd=.1, testval=alphabeta_init[-1])
94-
beta_reg = pm.Normal('beta', mu=0, sd=1,
95-
testval=alphabeta_init[:-1], shape=n_bmark)
96-
bmark_theano = tt.as_tensor_variable(bmark.values.T)
97-
mu_reg = alpha_reg + tt.dot(beta_reg, bmark_theano)
77+
X = data_bmark.iloc[:, 1]
78+
y = data_bmark.iloc[:, 0]
79+
80+
alpha_reg = pm.Normal('alpha', mu=0, sd=.1)
81+
beta_reg = pm.Normal('beta', mu=0, sd=1)
82+
83+
mu_reg = alpha_reg + beta_reg * X
9884
StudentT('returns',
9985
nu=nu + 2,
10086
mu=mu_reg,
10187
sd=sigma,
102-
observed=data)
103-
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
104-
step = pm.NUTS(scaling=start)
105-
trace = pm.sample(samples, step, start=start)
88+
observed=y)
89+
trace = pm.sample(samples)
10690

10791
return model, trace
10892

@@ -141,9 +125,7 @@ def model_returns_normal(data, samples=500):
141125
returns.distribution.variance**.5 *
142126
np.sqrt(252))
143127

144-
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
145-
step = pm.NUTS(scaling=start)
146-
trace = pm.sample(samples, step, start=start)
128+
trace = pm.sample(samples)
147129
return model, trace
148130

149131

@@ -185,9 +167,7 @@ def model_returns_t(data, samples=500):
185167
returns.distribution.variance**.5 *
186168
np.sqrt(252))
187169

188-
start = pm.find_MAP(fmin=sp.optimize.fmin_powell)
189-
step = pm.NUTS(scaling=start)
190-
trace = pm.sample(samples, step, start=start)
170+
trace = pm.sample(samples)
191171
return model, trace
192172

193173

@@ -272,9 +252,7 @@ def model_best(y1, y2, samples=1000):
272252
returns_group2.distribution.variance**.5 *
273253
np.sqrt(252))
274254

275-
step = pm.NUTS()
276-
277-
trace = pm.sample(samples, step)
255+
trace = pm.sample(samples)
278256
return model, trace
279257

280258

@@ -406,15 +384,8 @@ def model_stoch_vol(data, samples=2000):
406384
volatility_process = pm.Deterministic('volatility_process',
407385
pm.math.exp(-2 * s))
408386
StudentT('r', nu, lam=volatility_process, observed=data)
409-
start = pm.find_MAP(vars=[s], fmin=sp.optimize.fmin_l_bfgs_b)
410-
411-
step = pm.NUTS(scaling=start)
412-
trace = pm.sample(100, step, progressbar=False)
413387

414-
# Start next run at the last sampled position.
415-
step = pm.NUTS(scaling=trace[-1], gamma=.25)
416-
trace = pm.sample(samples, step, start=trace[-1],
417-
progressbar=False)
388+
trace = pm.sample(samples)
418389

419390
return model, trace
420391

pyfolio/tests/test_pos.py

+3-4
Original file line numberDiff line numberDiff line change
@@ -11,8 +11,7 @@
1111
Timestamp,
1212
read_csv
1313
)
14-
from pandas.util.testing import (assert_frame_equal,
15-
assert_equal)
14+
from pandas.util.testing import assert_frame_equal
1615

1716
from numpy import (
1817
arange,
@@ -166,7 +165,7 @@ def test_max_median_exposure(self, positions, expected):
166165
])
167166
def test_detect_intraday(self, positions, transactions, expected):
168167
detected = detect_intraday(positions, transactions, threshold=0.25)
169-
assert_equal(detected, expected)
168+
assert detected == expected
170169

171170
@parameterized.expand([
172171
('infer', test_returns, test_pos, test_txn, test_pos),
@@ -184,4 +183,4 @@ def test_check_intraday(self, estimate, returns,
184183
def test_estimate_intraday(self, returns, positions,
185184
transactions, expected):
186185
intraday_pos = estimate_intraday(returns, positions, transactions)
187-
assert_equal(intraday_pos.shape, expected)
186+
assert intraday_pos.shape == expected

pyfolio/tests/test_round_trips.py

+4-3
Original file line numberDiff line numberDiff line change
@@ -58,7 +58,8 @@ class RoundTripTestCase(TestCase):
5858
])
5959
def test_groupby_consecutive(self, transactions, expected):
6060
grouped_txn = _groupby_consecutive(transactions)
61-
assert_frame_equal(grouped_txn.sort(axis=1), expected.sort(axis=1))
61+
assert_frame_equal(grouped_txn.sort_index(axis='columns'),
62+
expected.sort_index(axis='columns'))
6263

6364
@parameterized.expand([
6465
# Simple round-trip
@@ -142,8 +143,8 @@ def test_extract_round_trips(self, transactions, expected,
142143
round_trips = extract_round_trips(transactions,
143144
portfolio_value=portfolio_value)
144145

145-
assert_frame_equal(round_trips.sort(axis=1),
146-
expected.sort(axis=1))
146+
assert_frame_equal(round_trips.sort_index(axis='columns'),
147+
expected.sort_index(axis='columns'))
147148

148149
def test_add_closing_trades(self):
149150
dates = date_range(start='2015-01-01', periods=20)

pyfolio/tests/test_timeseries.py

+2-1
Original file line numberDiff line numberDiff line change
@@ -183,7 +183,8 @@ def test_drawdown_overlaps(self):
183183
pairs = list(zip(spy_drawdowns['Recovery date'],
184184
spy_drawdowns['Peak date'].shift(-1)))[:-1]
185185
for recovery, peak in pairs:
186-
self.assertLessEqual(recovery, peak)
186+
if recovery != pd.NaT:
187+
self.assertLessEqual(recovery, peak)
187188

188189
@parameterized.expand([
189190
(pd.Series(px_list_1,

pyfolio/timeseries.py

+15-16
Original file line numberDiff line numberDiff line change
@@ -630,25 +630,24 @@ def value_at_risk(returns, period=None, sigma=2.0):
630630

631631

632632
SIMPLE_STAT_FUNCS = [
633-
annual_return,
633+
empyrical.annual_return,
634634
empyrical.cum_returns_final,
635-
annual_volatility,
636-
sharpe_ratio,
637-
calmar_ratio,
638-
stability_of_timeseries,
639-
max_drawdown,
640-
omega_ratio,
641-
sortino_ratio,
635+
empyrical.annual_volatility,
636+
empyrical.sharpe_ratio,
637+
empyrical.calmar_ratio,
638+
empyrical.stability_of_timeseries,
639+
empyrical.max_drawdown,
640+
empyrical.omega_ratio,
641+
empyrical.sortino_ratio,
642642
stats.skew,
643643
stats.kurtosis,
644-
tail_ratio,
645-
common_sense_ratio,
644+
empyrical.tail_ratio,
646645
value_at_risk
647646
]
648647

649648
FACTOR_STAT_FUNCS = [
650-
alpha,
651-
beta,
649+
empyrical.alpha,
650+
empyrical.beta,
652651
]
653652

654653
STAT_FUNC_NAMES = {
@@ -706,8 +705,8 @@ def perf_stats(returns, factor_returns=None, positions=None,
706705
if positions is not None:
707706
stats['Gross leverage'] = gross_lev(positions).mean()
708707
if transactions is not None:
709-
stats['Daily turnover'] = get_turnover(positions, transactions,
710-
period='1D').mean()
708+
stats['Daily turnover'] = get_turnover(positions,
709+
transactions).mean()
711710
if factor_returns is not None:
712711
for stat_func in FACTOR_STAT_FUNCS:
713712
res = stat_func(returns, factor_returns)
@@ -922,7 +921,7 @@ def get_top_drawdowns(returns, top=10):
922921
"""
923922

924923
returns = returns.copy()
925-
df_cum = cum_returns(returns, 1.0)
924+
df_cum = empyrical.cum_returns(returns, 1.0)
926925
running_max = np.maximum.accumulate(df_cum)
927926
underwater = df_cum / running_max - 1
928927

@@ -962,7 +961,7 @@ def gen_drawdown_table(returns, top=10):
962961
Information about top drawdowns.
963962
"""
964963

965-
df_cum = cum_returns(returns, 1.0)
964+
df_cum = empyrical.cum_returns(returns, 1.0)
966965
drawdown_periods = get_top_drawdowns(returns, top=top)
967966
df_drawdowns = pd.DataFrame(index=list(range(top)),
968967
columns=['Net drawdown in %',

pyfolio/utils.py

+11-2
Original file line numberDiff line numberDiff line change
@@ -24,6 +24,7 @@
2424
from IPython.display import display
2525
import pandas as pd
2626
from pandas.tseries.offsets import BDay
27+
2728
from pandas_datareader import data as web
2829

2930
from . import pos
@@ -241,8 +242,16 @@ def get_symbol_from_yahoo(symbol, start=None, end=None):
241242
Returns of symbol in requested period.
242243
"""
243244

244-
px = web.get_data_yahoo(symbol, start=start, end=end)
245-
rets = px[['Adj Close']].pct_change().dropna()
245+
try:
246+
px = web.get_data_yahoo(symbol, start=start, end=end)
247+
rets = px[['Adj Close']].pct_change().dropna()
248+
except Exception as e:
249+
warnings.warn(
250+
'Yahoo Finance read failed: {}, falling back to Google'.format(e),
251+
UserWarning)
252+
px = web.get_data_google(symbol, start=start, end=end)
253+
rets = px[['Close']].pct_change().dropna()
254+
246255
rets.index = rets.index.tz_localize("UTC")
247256
rets.columns = [symbol]
248257
return rets

setup.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -53,11 +53,11 @@
5353
'scipy>=0.14.0',
5454
'seaborn>=0.7.1',
5555
'pandas-datareader>=0.2',
56-
'empyrical>=0.2.2'
56+
'empyrical>=0.3.0'
5757
]
5858

5959
test_reqs = ['nose>=1.3.7', 'nose-parameterized>=0.5.0', 'runipy>=0.1.3']
60-
bayesian_reqs = ['pymc3']
60+
bayesian_reqs = ['pymc3 >= 3.1']
6161

6262
extras_reqs = {
6363
'bayesian': bayesian_reqs,

0 commit comments

Comments
 (0)