|
| 1 | +""" |
| 2 | +Prim's Algorithm. |
| 3 | +
|
| 4 | +Determines the minimum spanning tree(MST) of a graph using the Prim's Algorithm |
| 5 | +
|
| 6 | +Create a list to store x the vertices. |
| 7 | +G = [vertex(n) for n in range(x)] |
| 8 | +
|
| 9 | +For each vertex in G, add the neighbors: |
| 10 | +G[x].addNeighbor(G[y]) |
| 11 | +G[y].addNeighbor(G[x]) |
| 12 | +
|
| 13 | +For each vertex in G, add the edges: |
| 14 | +G[x].addEdge(G[y], w) |
| 15 | +G[y].addEdge(G[x], w) |
| 16 | +
|
| 17 | +To solve run: |
| 18 | +MST = prim(G, G[0]) |
| 19 | +""" |
| 20 | + |
| 21 | +import math |
| 22 | + |
| 23 | + |
| 24 | +class vertex(): |
| 25 | + """Class Vertex.""" |
| 26 | + |
| 27 | + def __init__(self, id): |
| 28 | + """ |
| 29 | + Arguments: |
| 30 | + id - input an id to identify the vertex |
| 31 | +
|
| 32 | + Attributes: |
| 33 | + neighbors - a list of the vertices it is linked to |
| 34 | + edges - a dict to store the edges's weight |
| 35 | + """ |
| 36 | + self.id = str(id) |
| 37 | + self.key = None |
| 38 | + self.pi = None |
| 39 | + self.neighbors = [] |
| 40 | + self.edges = {} # [vertex:distance] |
| 41 | + |
| 42 | + def __lt__(self, other): |
| 43 | + """Comparison rule to < operator.""" |
| 44 | + return (self.key < other.key) |
| 45 | + |
| 46 | + def __repr__(self): |
| 47 | + """Return the vertex id.""" |
| 48 | + return self.id |
| 49 | + |
| 50 | + def addNeighbor(self, vertex): |
| 51 | + """Add a pointer to a vertex at neighbor's list.""" |
| 52 | + self.neighbors.append(vertex) |
| 53 | + |
| 54 | + def addEdge(self, vertex, weight): |
| 55 | + """Destination vertex and weight.""" |
| 56 | + self.edges[vertex.id] = weight |
| 57 | + |
| 58 | + |
| 59 | +def prim(graph, root): |
| 60 | + """ |
| 61 | + Prim's Algorithm. |
| 62 | +
|
| 63 | + Return a list with the edges of a Minimum Spanning Tree |
| 64 | +
|
| 65 | + prim(graph, graph[0]) |
| 66 | + """ |
| 67 | + A = [] |
| 68 | + for u in graph: |
| 69 | + u.key = math.inf |
| 70 | + u.pi = None |
| 71 | + root.key = 0 |
| 72 | + Q = graph[:] |
| 73 | + while Q: |
| 74 | + u = min(Q) |
| 75 | + Q.remove(u) |
| 76 | + for v in u.neighbors: |
| 77 | + if (v in Q) and (u.edges[v.id] < v.key): |
| 78 | + v.pi = u |
| 79 | + v.key = u.edges[v.id] |
| 80 | + for i in range(1, len(graph)): |
| 81 | + A.append([graph[i].id, graph[i].pi.id]) |
| 82 | + return(A) |
0 commit comments