-
Notifications
You must be signed in to change notification settings - Fork 222
/
Copy pathadd.rs
318 lines (273 loc) · 11.9 KB
/
add.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
use core::mem;
use core::num::Wrapping;
use float::Float;
macro_rules! add {
($intrinsic:ident: $ty:ty) => {
/// Returns `a + b`
#[allow(unused_parens)]
#[cfg_attr(not(test), no_mangle)]
pub extern fn $intrinsic(a: $ty, b: $ty) -> $ty {
let one = Wrapping(1 as <$ty as Float>::Int);
let zero = Wrapping(0 as <$ty as Float>::Int);
let bits = Wrapping(<$ty>::bits() as <$ty as Float>::Int);
let significand_bits = Wrapping(<$ty>::significand_bits() as <$ty as Float>::Int);
let exponent_bits = bits - significand_bits - one;
let max_exponent = (one << exponent_bits.0 as usize) - one;
let implicit_bit = one << significand_bits.0 as usize;
let significand_mask = implicit_bit - one;
let sign_bit = one << (significand_bits + exponent_bits).0 as usize;
let abs_mask = sign_bit - one;
let exponent_mask = abs_mask ^ significand_mask;
let inf_rep = exponent_mask;
let quiet_bit = implicit_bit >> 1;
let qnan_rep = exponent_mask | quiet_bit;
let mut a_rep = Wrapping(a.repr());
let mut b_rep = Wrapping(b.repr());
let a_abs = a_rep & abs_mask;
let b_abs = b_rep & abs_mask;
// Detect if a or b is zero, infinity, or NaN.
if a_abs - one >= inf_rep - one ||
b_abs - one >= inf_rep - one {
// NaN + anything = qNaN
if a_abs > inf_rep {
return (<$ty as Float>::from_repr((a_abs | quiet_bit).0));
}
// anything + NaN = qNaN
if b_abs > inf_rep {
return (<$ty as Float>::from_repr((b_abs | quiet_bit).0));
}
if a_abs == inf_rep {
// +/-infinity + -/+infinity = qNaN
if (a.repr() ^ b.repr()) == sign_bit.0 {
return (<$ty as Float>::from_repr(qnan_rep.0));
} else {
// +/-infinity + anything remaining = +/- infinity
return a;
}
}
// anything remaining + +/-infinity = +/-infinity
if b_abs == inf_rep {
return b;
}
// zero + anything = anything
if a_abs.0 == 0 {
// but we need to get the sign right for zero + zero
if b_abs.0 == 0 {
return (<$ty as Float>::from_repr(a.repr() & b.repr()));
} else {
return b;
}
}
// anything + zero = anything
if b_abs.0 == 0 {
return a;
}
}
// Swap a and b if necessary so that a has the larger absolute value.
if b_abs > a_abs {
mem::swap(&mut a_rep, &mut b_rep);
}
// Extract the exponent and significand from the (possibly swapped) a and b.
let mut a_exponent = Wrapping((a_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut b_exponent = Wrapping((b_rep >> significand_bits.0 as usize & max_exponent).0 as i32);
let mut a_significand = a_rep & significand_mask;
let mut b_significand = b_rep & significand_mask;
// normalize any denormals, and adjust the exponent accordingly.
if a_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(a_significand.0);
a_exponent = Wrapping(exponent);
a_significand = Wrapping(significand);
}
if b_exponent.0 == 0 {
let (exponent, significand) = <$ty>::normalize(b_significand.0);
b_exponent = Wrapping(exponent);
b_significand = Wrapping(significand);
}
// The sign of the result is the sign of the larger operand, a. If they
// have opposite signs, we are performing a subtraction; otherwise addition.
let result_sign = a_rep & sign_bit;
let subtraction = ((a_rep ^ b_rep) & sign_bit) != zero;
// Shift the significands to give us round, guard and sticky, and or in the
// implicit significand bit. (If we fell through from the denormal path it
// was already set by normalize(), but setting it twice won't hurt
// anything.)
a_significand = (a_significand | implicit_bit) << 3;
b_significand = (b_significand | implicit_bit) << 3;
// Shift the significand of b by the difference in exponents, with a sticky
// bottom bit to get rounding correct.
let align = Wrapping((a_exponent - b_exponent).0 as <$ty as Float>::Int);
if align.0 != 0 {
if align < bits {
let sticky = ((b_significand << (bits - align).0 as usize).0 != 0) as <$ty as Float>::Int;
b_significand = (b_significand >> align.0 as usize) | Wrapping(sticky);
} else {
b_significand = one; // sticky; b is known to be non-zero.
}
}
if subtraction {
a_significand -= b_significand;
// If a == -b, return +zero.
if a_significand.0 == 0 {
return (<$ty as Float>::from_repr(0));
}
// If partial cancellation occured, we need to left-shift the result
// and adjust the exponent:
if a_significand < implicit_bit << 3 {
let shift = a_significand.0.leading_zeros() as i32
- (implicit_bit << 3).0.leading_zeros() as i32;
a_significand <<= shift as usize;
a_exponent -= Wrapping(shift);
}
} else /* addition */ {
a_significand += b_significand;
// If the addition carried up, we need to right-shift the result and
// adjust the exponent:
if (a_significand & implicit_bit << 4).0 != 0 {
let sticky = ((a_significand & one).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> 1 | Wrapping(sticky);
a_exponent += Wrapping(1);
}
}
// If we have overflowed the type, return +/- infinity:
if a_exponent >= Wrapping(max_exponent.0 as i32) {
return (<$ty>::from_repr((inf_rep | result_sign).0));
}
if a_exponent.0 <= 0 {
// Result is denormal before rounding; the exponent is zero and we
// need to shift the significand.
let shift = Wrapping((Wrapping(1) - a_exponent).0 as <$ty as Float>::Int);
let sticky = ((a_significand << (bits - shift).0 as usize).0 != 0) as <$ty as Float>::Int;
a_significand = a_significand >> shift.0 as usize | Wrapping(sticky);
a_exponent = Wrapping(0);
}
// Low three bits are round, guard, and sticky.
let round_guard_sticky: i32 = (a_significand.0 & 0x7) as i32;
// Shift the significand into place, and mask off the implicit bit.
let mut result = a_significand >> 3 & significand_mask;
// Insert the exponent and sign.
result |= Wrapping(a_exponent.0 as <$ty as Float>::Int) << significand_bits.0 as usize;
result |= result_sign;
// Final rounding. The result may overflow to infinity, but that is the
// correct result in that case.
if round_guard_sticky > 0x4 { result += one; }
if round_guard_sticky == 0x4 { result += result & one; }
return (<$ty>::from_repr(result.0));
}
}
}
add!(__addsf3: f32);
add!(__adddf3: f64);
#[cfg(test)]
mod tests {
use core::{f32, f64};
use float::Float;
use qc::{U32, U64};
// NOTE The tests below have special handing for NaN values.
// Because NaN != NaN, the floating-point representations must be used
// Because there are many diffferent values of NaN, and the implementation
// doesn't care about calculating the 'correct' one, if both values are NaN
// the values are considered equivalent.
struct FRepr<F>(F);
impl<F: Float> PartialEq for FRepr<F> {
fn eq(&self, other: &FRepr<F>) -> bool {
// NOTE(cfg) for some reason, on hard float targets, our implementation doesn't
// match the output of its gcc_s counterpart. Until we investigate further, we'll
// just avoid testing against gcc_s on those targets. Do note that our
// implementation matches the output of the FPU instruction on *hard* float targets
// and matches its gcc_s counterpart on *soft* float targets.
if cfg!(gnueabihf) {
return true
}
self.0.eq_repr(other.0)
}
}
// TODO: Add F32/F64 to qc so that they print the right values (at the very least)
check! {
fn __addsf3(f: extern fn(f32, f32) -> f32,
a: U32,
b: U32)
-> Option<FRepr<f32> > {
let (a, b) = (f32::from_repr(a.0), f32::from_repr(b.0));
Some(FRepr(f(a, b)))
}
fn __adddf3(f: extern fn(f64, f64) -> f64,
a: U64,
b: U64) -> Option<FRepr<f64> > {
let (a, b) = (f64::from_repr(a.0), f64::from_repr(b.0));
Some(FRepr(f(a, b)))
}
}
// More tests for special float values
#[test]
fn test_float_tiny_plus_tiny() {
let tiny = f32::from_repr(1);
let r = super::__addsf3(tiny, tiny);
assert!(r.eq_repr(tiny + tiny));
}
#[test]
fn test_double_tiny_plus_tiny() {
let tiny = f64::from_repr(1);
let r = super::__adddf3(tiny, tiny);
assert!(r.eq_repr(tiny + tiny));
}
#[test]
fn test_float_small_plus_small() {
let a = f32::from_repr(327);
let b = f32::from_repr(256);
let r = super::__addsf3(a, b);
assert!(r.eq_repr(a + b));
}
#[test]
fn test_double_small_plus_small() {
let a = f64::from_repr(327);
let b = f64::from_repr(256);
let r = super::__adddf3(a, b);
assert!(r.eq_repr(a + b));
}
#[test]
fn test_float_one_plus_one() {
let r = super::__addsf3(1f32, 1f32);
assert!(r.eq_repr(1f32 + 1f32));
}
#[test]
fn test_double_one_plus_one() {
let r = super::__adddf3(1f64, 1f64);
assert!(r.eq_repr(1f64 + 1f64));
}
#[test]
fn test_float_different_nan() {
let a = f32::from_repr(1);
let b = f32::from_repr(0b11111111100100010001001010101010);
let x = super::__addsf3(a, b);
let y = a + b;
assert!(x.eq_repr(y));
}
#[test]
fn test_double_different_nan() {
let a = f64::from_repr(1);
let b = f64::from_repr(0b1111111111110010001000100101010101001000101010000110100011101011);
let x = super::__adddf3(a, b);
let y = a + b;
assert!(x.eq_repr(y));
}
#[test]
fn test_float_nan() {
let r = super::__addsf3(f32::NAN, 1.23);
assert_eq!(r.repr(), f32::NAN.repr());
}
#[test]
fn test_double_nan() {
let r = super::__adddf3(f64::NAN, 1.23);
assert_eq!(r.repr(), f64::NAN.repr());
}
#[test]
fn test_float_inf() {
let r = super::__addsf3(f32::INFINITY, -123.4);
assert_eq!(r, f32::INFINITY);
}
#[test]
fn test_double_inf() {
let r = super::__adddf3(f64::INFINITY, -123.4);
assert_eq!(r, f64::INFINITY);
}
}