You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[C's `char` type] is completely unlike [Rust's `char` type]; while Rust's type represents a unicode scalar value, C's `char` type is just an ordinary integer. This type will always be either [`i8`] or [`u8`], as the type is defined as being one byte long.
4
+
5
+
C chars are most commonly used to make C strings. Unlike Rust, where the length of a string is included alongside the string, C strings mark the end of a string with the character `'\0'`. See [`CStr`] for more information.
This type will almost always be [`f64`], which is guaranteed to be an [IEEE-754 double-precision float] in Rust. That said, the standard technically only guarantees that it be a floating-point number with at least the precision of a [`float`], and it may be `f32` or something entirely different from the IEEE-754 standard.
This type will almost always be [`f32`], which is guaranteed to be an [IEEE-754 single-precision float] in Rust. That said, the standard technically only guarantees that it be a floating-point number, and it may have less precision than `f32` or not follow the IEEE-754 standard at all.
This type will almost always be [`i32`], but may differ on some esoteric systems. The C standard technically only requires that this type be a signed integer that is at least the size of a [`short`]; some systems define it as an [`i16`], for example.
This type will always be [`i32`] or [`i64`]. Most notably, many Linux-based systems assume an `i64`, but Windows assumes `i32`. The C standard technically only requires that this type be a signed integer that is at least 32 bits and at least the size of an [`int`], although in practice, no system would have a `long` that is neither an `i32` nor `i64`.
Equivalent to C's `signed long long` (`long long`) type.
2
+
3
+
This type will almost always be [`i64`], but may differ on some systems. The C standard technically only requires that this type be a signed integer that is at least 64 bits and at least the size of a [`long`], although in practice, no system would have a `long long` that is not an `i64`, as most systems do not have a standardised [`i128`] type.
This type will almost always be [`i16`], but may differ on some esoteric systems. The C standard technically only requires that this type be a signed integer with at least 16 bits; some systems may define it as `i32`, for example.
This type will almost always be [`u32`], but may differ on some esoteric systems. The C standard technically only requires that this type be an unsigned integer with the same size as an [`int`]; some systems define it as a [`u16`], for example.
This type will always be [`u32`] or [`u64`]. Most notably, many Linux-based systems assume an `u64`, but Windows assumes `u32`. The C standard technically only requires that this type be an unsigned integer with the size of a [`long`], although in practice, no system would have a `ulong` that is neither a `u32` nor `u64`.
This type will almost always be [`u64`], but may differ on some systems. The C standard technically only requires that this type be an unsigned integer with the size of a [`long long`], although in practice, no system would have a `long long` that is not a `u64`, as most systems do not have a standardised [`u128`] type.
0 commit comments