-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathmain.py
174 lines (143 loc) · 6.75 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import Model as Net
import numpy as np
from utils import *
import random
import os
from LRSchedule import MyLRScheduler
cudnn.benchmark = True
#============================================
__author__ = "Sachin Mehta"
__license__ = "MIT"
__maintainer__ = "Sachin Mehta"
#============================================
def compute_params(model):
return sum([np.prod(p.size()) for p in model.parameters()])
def main(args):
best_prec1 = 0.0
if not os.path.isdir(args.savedir):
os.mkdir(args.savedir)
# create model
model = Net.EESPNet(classes=1000, s=args.s)
print('Network Parameters: ' + str(compute_params(model)))
#check if the cuda is available or not
cuda_available = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
if num_gpus >= 1:
model = torch.nn.DataParallel(model)
if cuda_available:
model = model.cuda()
logFileLoc = args.savedir + 'logs.txt'
if os.path.isfile(logFileLoc):
logger = open(logFileLoc, 'a')
else:
logger = open(logFileLoc, 'w')
logger.write("\n%s\t%s\t%s\t%s\t%s\t" % ('Epoch', 'Loss(Tr)', 'Loss(val)', 'top1 (tr)', 'top1 (val'))
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay, nesterov=True)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader1 = torch.utils.data.DataLoader(
datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(args.inpSize),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(int(args.inpSize/0.875)),
transforms.CenterCrop(args.inpSize),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
# global customLR
# steps at which we should decrease the learning rate
step_sizes = [51, 101, 131, 161, 191, 221, 251, 281]
#ImageNet experiments consume a lot of time
# Just for safety, store the checkpoint before we decrease the learning rate
# i.e. store the model at step -1
step_store = list()
for step in step_sizes:
step_store.append(step-1)
customLR = MyLRScheduler(args.lr, 5, step_sizes)
#set up the variables in case of resuming
if args.start_epoch != 0:
for epoch in range(args.start_epoch):
customLR.get_lr(epoch)
for epoch in range(args.start_epoch, args.epochs):
lr_log = customLR.get_lr(epoch)
# set the optimizer with the learning rate
# This can be done inside the MyLRScheduler
for param_group in optimizer.param_groups:
param_group['lr'] = lr_log
print("LR for epoch {} = {:.5f}".format(epoch, lr_log))
train_prec1, train_loss = train(train_loader1, model, optimizer, epoch)
# evaluate on validation set
val_prec1, val_loss = validate(val_loader, model)
# remember best prec@1 and save checkpoint
is_best = val_prec1.item() > best_prec1
best_prec1 = max(val_prec1.item(), best_prec1)
back_check = True if epoch in step_store else False #backup checkpoint or not
save_checkpoint({
'epoch': epoch + 1,
'arch': 'ESPNet',
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, back_check, epoch, args.savedir)
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.7f" % (epoch, train_loss, val_loss, train_prec1,
val_prec1, lr_log))
logger.flush()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='ESPNetv2 Training on the ImageNet')
parser.add_argument('--data', default='/home/ubuntu/ILSVRC2015/Data/CLS-LOC/', help='path to dataset')
parser.add_argument('--workers', default=12, type=int, help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=300, type=int, help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)')
parser.add_argument('--batch-size', default=512, type=int, help='mini-batch size (default: 512)')
parser.add_argument('--lr', default=0.1, type=float, help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', default=4e-5, type=float, help='weight decay (default: 4e-5)')
parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)')
parser.add_argument('--savedir', type=str, default='./results', help='Location to save the results')
parser.add_argument('--s', default=1, type=float, help='Factor by which output channels should be reduced (s > 1 '
'for increasing the dims while < 1 for decreasing)')
parser.add_argument('--inpSize', default=224, type=int, help='Input image size (default: 224 x 224)')
args = parser.parse_args()
args.parallel = True
cudnn.deterministic = True
random.seed(1882)
torch.manual_seed(1882)
args.savedir = args.savedir + '_s_' + str(args.s) + '_inp_' + str(args.inpSize) + os.sep
main(args)