-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathTransforms.py
159 lines (125 loc) · 4.51 KB
/
Transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import torch
import random
import cv2
#============================================
__author__ = "Sachin Mehta"
__license__ = "MIT"
__maintainer__ = "Sachin Mehta"
#============================================
class Scale(object):
"""
Randomly crop and resize the given PIL image with a probability of 0.5
"""
def __init__(self, wi, he):
'''
:param wi: width after resizing
:param he: height after reszing
'''
self.w = wi
self.h = he
def __call__(self, img, label):
'''
:param img: RGB image
:param label: semantic label image
:return: resized images
'''
#bilinear interpolation for RGB image
img = cv2.resize(img, (self.w, self.h))
# nearest neighbour interpolation for label image
label = cv2.resize(label, (self.w, self.h), interpolation=cv2.INTER_NEAREST)
return [img, label]
class RandomCropResize(object):
"""
Randomly crop and resize the given PIL image with a probability of 0.5
"""
def __init__(self, size):
'''
:param crop_area: area to be cropped (this is the max value and we select between o and crop area
'''
self.size = size
def __call__(self, img, label):
h, w = img.shape[:2]
x1 = random.randint(0, int(w*0.1)) # 25% to 10%
y1 = random.randint(0, int(h*0.1))
img_crop = img[y1:h-y1, x1:w-x1]
label_crop = label[y1:h-y1, x1:w-x1]
img_crop = cv2.resize(img_crop, self.size)
label_crop = cv2.resize(label_crop, self.size, interpolation=cv2.INTER_NEAREST)
return img_crop, label_crop
class RandomCrop(object):
'''
This class if for random cropping
'''
def __init__(self, cropArea):
'''
:param cropArea: amount of cropping (in pixels)
'''
self.crop = cropArea
def __call__(self, img, label):
if random.random() < 0.5:
h, w = img.shape[:2]
img_crop = img[self.crop:h-self.crop, self.crop:w-self.crop]
label_crop = label[self.crop:h-self.crop, self.crop:w-self.crop]
return img_crop, label_crop
else:
return [img, label]
class RandomFlip(object):
"""Randomly horizontally flips the given PIL.Image with a probability of 0.5
"""
def __call__(self, image, label):
if random.random() < 0.5:
x1 = 0#random.randint(0, 1) #if you want to do vertical flip, uncomment this line
if x1 == 0:
image = cv2.flip(image, 0) # horizontal flip
label = cv2.flip(label, 0) # horizontal flip
else:
image = cv2.flip(image, 1) # veritcal flip
label = cv2.flip(label, 1) # veritcal flip
return [image, label]
class Normalize(object):
"""Given mean: (R, G, B) and std: (R, G, B),
will normalize each channel of the torch.*Tensor, i.e.
channel = (channel - mean) / std
"""
def __init__(self, mean, std):
'''
:param mean: global mean computed from dataset
:param std: global std computed from dataset
'''
self.mean = mean
self.std = std
def __call__(self, image, label):
image = image.astype(np.float32)
for i in range(3):
image[:,:,i] -= self.mean[i]
for i in range(3):
image[:,:, i] /= self.std[i]
return [image, label]
class ToTensor(object):
'''
This class converts the data to tensor so that it can be processed by PyTorch
'''
def __init__(self, scale=1):
'''
:param scale: ESPNet-C's output is 1/8th of original image size, so set this parameter accordingly
'''
self.scale = scale # original images are 2048 x 1024
def __call__(self, image, label):
if self.scale != 1:
h, w = label.shape[:2]
image = cv2.resize(image, (int(w), int(h)))
label = cv2.resize(label, (int(w/self.scale), int(h/self.scale)), interpolation=cv2.INTER_NEAREST)
image = image.transpose((2,0,1))
image_tensor = torch.from_numpy(image).div(255)
label_tensor = torch.LongTensor(np.array(label, dtype=np.int)) #torch.from_numpy(label)
return [image_tensor, label_tensor]
class Compose(object):
"""Composes several transforms together.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, *args):
for t in self.transforms:
args = t(*args)
return args