-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathmain.py
266 lines (212 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import loadData as ld
import os
import torch
import pickle
from cnn import SegmentationModel as net
import torch.backends.cudnn as cudnn
import Transforms as myTransforms
import DataSet as myDataLoader
from argparse import ArgumentParser
from train_utils import train, val, netParams, save_checkpoint, poly_lr_scheduler
import torch.optim.lr_scheduler
#============================================
__author__ = "Sachin Mehta"
__license__ = "MIT"
__maintainer__ = "Sachin Mehta"
#============================================
def trainValidateSegmentation(args):
'''
Main function for trainign and validation
:param args: global arguments
:return: None
'''
# load the model
cuda_available = torch.cuda.is_available()
num_gpus = torch.cuda.device_count()
model = net.EESPNet_Seg(args.classes, s=args.s, pretrained=args.pretrained, gpus=num_gpus)
if num_gpus >= 1:
model = torch.nn.DataParallel(model)
args.savedir = args.savedir + str(args.s) + '/'
# create the directory if not exist
if not os.path.exists(args.savedir):
os.mkdir(args.savedir)
# check if processed data file exists or not
if not os.path.isfile(args.cached_data_file):
dataLoad = ld.LoadData(args.data_dir, args.classes, args.cached_data_file)
data = dataLoad.processData()
if data is None:
print('Error while pickling data. Please check.')
exit(-1)
else:
data = pickle.load(open(args.cached_data_file, "rb"))
if cuda_available:
args.onGPU = True
model = model.cuda()
total_paramters = netParams(model)
print('Total network parameters: ' + str(total_paramters))
# define optimization criteria
weight = torch.from_numpy(data['classWeights']) # convert the numpy array to torch
if args.onGPU:
weight = weight.cuda()
criteria = torch.nn.CrossEntropyLoss(weight) #weight
if args.onGPU:
criteria = criteria.cuda()
print('Data statistics')
print(data['mean'], data['std'])
print(data['classWeights'])
#compose the data with transforms
trainDataset_main = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(size=(args.inWidth, args.inHeight)),
myTransforms.RandomFlip(),
#myTransforms.RandomCrop(64).
myTransforms.ToTensor(args.scaleIn),
#
])
trainDataset_scale1 = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(size=(int(args.inWidth*1.5), int(1.5*args.inHeight))),
myTransforms.RandomFlip(),
myTransforms.ToTensor(args.scaleIn),
#
])
trainDataset_scale2 = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(size=(int(args.inWidth*1.25), int(1.25*args.inHeight))), # 1536, 768
myTransforms.RandomFlip(),
myTransforms.ToTensor(args.scaleIn),
#
])
trainDataset_scale3 = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(size=(int(args.inWidth*0.75), int(0.75*args.inHeight))),
myTransforms.RandomFlip(),
myTransforms.ToTensor(args.scaleIn),
#
])
trainDataset_scale4 = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.RandomCropResize(size=(int(args.inWidth*0.5), int(0.5*args.inHeight))),
myTransforms.RandomFlip(),
myTransforms.ToTensor(args.scaleIn),
#
])
valDataset = myTransforms.Compose([
myTransforms.Normalize(mean=data['mean'], std=data['std']),
myTransforms.Scale(1024, 512),
myTransforms.ToTensor(args.scaleIn),
#
])
# since we training from scratch, we create data loaders at different scales
# so that we can generate more augmented data and prevent the network from overfitting
trainLoader = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDataset_main),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainLoader_scale1 = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDataset_scale1),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainLoader_scale2 = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDataset_scale2),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainLoader_scale3 = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDataset_scale3),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
trainLoader_scale4 = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['trainIm'], data['trainAnnot'], transform=trainDataset_scale4),
batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True)
valLoader = torch.utils.data.DataLoader(
myDataLoader.MyDataset(data['valIm'], data['valAnnot'], transform=valDataset),
batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True)
if args.onGPU:
cudnn.benchmark = True
start_epoch = 0
best_val = 0
lr = args.lr
optimizer = torch.optim.Adam(model.parameters(), lr, (0.9, 0.999), eps=1e-08, weight_decay=5e-4)
# we step the loss by 2 after step size is reached
#scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.step_loss, gamma=0.5)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch']
best_val = checkpoint['best_val']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
logFileLoc = args.savedir + args.logFile
if os.path.isfile(logFileLoc):
logger = open(logFileLoc, 'a')
else:
logger = open(logFileLoc, 'w')
logger.write("Parameters: %s" % (str(total_paramters)))
logger.write("\n%s\t%s\t%s\t%s\t%s\t" % ('Epoch', 'Loss(Tr)', 'Loss(val)', 'mIOU (tr)', 'mIOU (val'))
logger.flush()
for epoch in range(start_epoch, args.max_epochs):
#scheduler.step(epoch)
poly_lr_scheduler(args, optimizer, epoch)
lr = 0
for param_group in optimizer.param_groups:
lr = param_group['lr']
print("Learning rate: " + str(lr))
# train for one epoch
# We consider 1 epoch with all the training data (at different scales)
train(args, trainLoader_scale1, model, criteria, optimizer, epoch)
train(args, trainLoader_scale2, model, criteria, optimizer, epoch)
train(args, trainLoader_scale4, model, criteria, optimizer, epoch)
train(args, trainLoader_scale3, model, criteria, optimizer, epoch)
lossTr, overall_acc_tr, per_class_acc_tr, per_class_iu_tr, mIOU_tr = train(args, trainLoader, model, criteria, optimizer, epoch)
# evaluate on validation set
lossVal, overall_acc_val, per_class_acc_val, per_class_iu_val, mIOU_val = val(args, valLoader, model, criteria)
is_best = mIOU_val > best_val
best_val = max(mIOU_val, best_val)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
'lr': lr,
'best_val': best_val,
}, args.savedir + 'checkpoint.pth.tar')
#save the model also
if is_best:
model_file_name = args.savedir + os.sep + 'model_best.pth'
torch.save(model.state_dict(), model_file_name)
with open(args.savedir + 'acc_' + str(epoch) + '.txt', 'w') as log:
log.write("\nEpoch: %d\t Overall Acc (Tr): %.4f\t Overall Acc (Val): %.4f\t mIOU (Tr): %.4f\t mIOU (Val): %.4f" % (epoch, overall_acc_tr, overall_acc_val, mIOU_tr, mIOU_val))
log.write('\n')
log.write('Per Class Training Acc: ' + str(per_class_acc_tr))
log.write('\n')
log.write('Per Class Validation Acc: ' + str(per_class_acc_val))
log.write('\n')
log.write('Per Class Training mIOU: ' + str(per_class_iu_tr))
log.write('\n')
log.write('Per Class Validation mIOU: ' + str(per_class_iu_val))
logger.write("\n%d\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.4f\t\t%.7f" % (epoch, lossTr, lossVal, mIOU_tr, mIOU_val, lr))
logger.flush()
print("Epoch : " + str(epoch) + ' Details')
print("\nEpoch No.: %d\tTrain Loss = %.4f\tVal Loss = %.4f\t mIOU(tr) = %.4f\t mIOU(val) = %.4f" % (epoch, lossTr, lossVal, mIOU_tr, mIOU_val))
logger.close()
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--model', default="ESPNetv2", help='Model name')
parser.add_argument('--data_dir', default="./city", help='Data directory')
parser.add_argument('--inWidth', type=int, default=1024, help='Width of RGB image')
parser.add_argument('--inHeight', type=int, default=512, help='Height of RGB image')
parser.add_argument('--scaleIn', type=int, default=1, help='For ESPNet-C, scaleIn=8. For ESPNet, scaleIn=1')
parser.add_argument('--max_epochs', type=int, default=300, help='Max. number of epochs')
parser.add_argument('--num_workers', type=int, default=12, help='No. of parallel threads')
parser.add_argument('--batch_size', type=int, default=10, help='Batch size. 12 for ESPNet-C and 6 for ESPNet. '
'Change as per the GPU memory')
parser.add_argument('--step_loss', type=int, default=100, help='Decrease learning rate after how many epochs.')
parser.add_argument('--lr', type=float, default=5e-4, help='Initial learning rate')
parser.add_argument('--savedir', default='./results_espnetv2_', help='directory to save the results')
parser.add_argument('--resume', type=str, default='', help='Use this flag to load last checkpoint for training') #
parser.add_argument('--classes', type=int, default=20, help='No of classes in the dataset. 20 for cityscapes')
parser.add_argument('--cached_data_file', default='city.p', help='Cached file name')
parser.add_argument('--logFile', default='trainValLog.txt', help='File that stores the training and validation logs')
parser.add_argument('--pretrained', default='', help='Pretrained ESPNetv2 weights.')
parser.add_argument('--s', default=1, type=float, help='scaling parameter')
trainValidateSegmentation(parser.parse_args())