Skip to content

Commit 002d253

Browse files
Release Managervbraun
Release Manager
authored andcommitted
Trac #18928: A new structure for Reed-Solomon codes in Sage
This ticket proposes a new implementation for Generalized Reed-Solomon codes in Sage. It contains: - a new code class, `GeneralizedReedSolomonCode`, which wraps Reed- Solomon code in the object-oriented structure introduced in #18099, - a first new encoder, `GRSEvaluationVectorEncoder`, which can encode words from a message space which is a vector space, and - a second new encoder, `GRSEvaluationPolynomialEncoder`, which can encode words from a message space which is a polynomial ring. This new implementation properly sets GRS codes in the object-oriented structure, which allows the user to use specific methods and algorithms to encode (and later decode) words. It also introduces the notion of generalized Reed-Solomon codes, which means that the user can now set a list of column multipliers for the code. It also allows to compute parity-check matrix and generator matrix from the parameters of the code, through dedicated methods. It allows super- fast computation of certain - usually exponential - properties, such as weight distribution. As GRS codes are now objects in Sage, it is also possible to ask a GRS code for its specific parameters (like the list of its evaluation points, or its column multipliers). The two provided encoders follow the structure introduced in #18376. This ticket also removes the old `ReedSolomonCode` method from the global namespace as it was deprecated more than a year ago (see #15445). More details about GRS codes can be found in the docstring of the provided code. URL: http://trac.sagemath.org/18928 Reported by: dlucas Ticket author(s): David Lucas, Johan Sebastian Rosenkilde Nielsen Reviewer(s): Johan Sebastian Rosenkilde Nielsen, David Lucas
2 parents 4ba1e9a + eabe7e0 commit 002d253

File tree

9 files changed

+870
-87
lines changed

9 files changed

+870
-87
lines changed

src/doc/en/reference/coding/index.rst

+1
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ Coding Theory
1313
sage/coding/channel_constructions
1414
sage/coding/channels_catalog
1515
sage/coding/codes_catalog
16+
sage/coding/grs
1617
sage/coding/linear_code
1718
sage/coding/code_constructions
1819
sage/coding/guava

src/doc/en/thematic_tutorials/coding_theory.rst

+10-15
Original file line numberDiff line numberDiff line change
@@ -577,10 +577,8 @@ Python:
577577
applied to the ambient ``MatrixSpace`` of the generator matrix until a
578578
full rank matrix is found.
579579

580-
- ``ReedSolomonCode`` - Also called a "generalized Reed-Solomon code" (the
581-
"narrow" RS codes codes are also cyclic codes; they are part of GUAVA
582-
but have not been ported over to natice Python/Sage yet). Given a
583-
finite field :math:`\mathbb{F}` of order :math:`q`, let :math:`n` and
580+
- ``GeneralizedReedSolomonCode`` - Given a finite field :math:`\mathbb{F}`
581+
of order :math:`q`, let :math:`n` and
584582
:math:`k` be chosen such that :math:`1 \leq k \leq n \leq q`. Pick
585583
:math:`n` distinct elements of :math:`\mathbb{F}`, denoted
586584
:math:`\{ x_1, x_2, ... , x_n \}`. Then, the codewords are obtained
@@ -597,31 +595,28 @@ Python:
597595

598596
INPUT:
599597

600-
- ``n`` : the length
598+
- ``evaluation_points`` -- A list of evaluation points in a finite field F
601599

602-
- ``k`` : the dimension
600+
- ``dimension`` -- The dimension of the code
603601

604-
- ``F`` : the base ring
605-
606-
- ``pts`` : (optional) list of :math:`n` points in :math:`\mathbb{F}` (if
607-
omitted then Sage picks :math:`n` of them in the order given to
608-
the elements of :math:`\mathbb{F}`)
602+
- ``column_multipliers`` -- (default: ``None``) List of column multipliers in F for this code.
603+
All column multipliers are set to 1 if default value is kept.
609604

610605
EXAMPLES:
611606

612607
::
613608

614609

615-
sage: C = codes.ReedSolomonCode(6,4,GF(7)); C
616-
Linear code of length 6, dimension 4 over Finite Field of size 7
610+
sage: C = codes.GeneralizedReedSolomonCode(GF(7).list()[:6], 4); C
611+
[6, 4, 3] Generalized Reed-Solomon Code over Finite Field of size 7
617612
sage: C.minimum_distance()
618613
3
619614
sage: F.<a> = GF(3^2,"a")
620615
sage: pts = [0,1,a,a^2,2*a,2*a+1]
621616
sage: len(Set(pts)) == 6 # to make sure there are no duplicates
622617
True
623-
sage: C = codes.ReedSolomonCode(6,4,F,pts); C
624-
Linear code of length 6, dimension 4 over Finite Field in a of size 3^2
618+
sage: C = codes.GeneralizedReedSolomonCode(pts, 4); C
619+
[6, 4, 3] Generalized Reed-Solomon Code over Finite Field in a of size 3^2
625620
sage: C.minimum_distance()
626621
3
627622

src/sage/coding/all.py

+1
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@
44
"walsh_matrix"])
55

66
from sage.misc.superseded import deprecated_callable_import
7+
78
deprecated_callable_import(19315,
89
"sage.coding.code_bounds",
910
globals(),

src/sage/coding/code_constructions.py

+4-52
Original file line numberDiff line numberDiff line change
@@ -1202,54 +1202,10 @@ def RandomLinearCode(n,k,F):
12021202

12031203

12041204
def ReedSolomonCode(n,k,F,pts = None):
1205-
r"""
1206-
Given a finite field `F` of order `q`, let
1207-
`n` and `k` be chosen such that
1208-
`1 \leq k \leq n \leq q`. Pick `n` distinct
1209-
elements of `F`, denoted
1210-
`\{ x_1, x_2, ... , x_n \}`. Then, the codewords are
1211-
obtained by evaluating every polynomial in `F[x]` of degree
1212-
less than `k` at each `x_i`:
1213-
1214-
.. math::
1215-
1216-
C = \left\{ \left( f(x_1), f(x_2), ..., f(x_n) \right), f \in F[x],
1217-
{\rm deg}(f)<k \right\}.
1218-
1219-
1220-
`C` is a `[n, k, n-k+1]` code. (In particular, `C` is MDS.)
1221-
1222-
INPUT: n : the length k : the dimension F : the base ring pts :
1223-
(optional) list of n points in F (if None then Sage picks n of them
1224-
in the order given to the elements of F)
1225-
1226-
EXAMPLES::
1227-
1228-
sage: C = codes.ReedSolomonCode(6,4,GF(7)); C
1229-
Linear code of length 6, dimension 4 over Finite Field of size 7
1230-
sage: C.minimum_distance()
1231-
3
1232-
sage: C = codes.ReedSolomonCode(6,4,GF(8,"a")); C
1233-
Linear code of length 6, dimension 4 over Finite Field in a of size 2^3
1234-
sage: C.minimum_distance()
1235-
3
1236-
sage: C.minimum_distance(algorithm='gap') # long time, check d=n-k+1
1237-
3
1238-
sage: F.<a> = GF(3^2,"a")
1239-
sage: pts = [0,1,a,a^2,2*a,2*a+1]
1240-
sage: len(Set(pts)) == 6 # to make sure there are no duplicates
1241-
True
1242-
sage: C = codes.ReedSolomonCode(6,4,F,pts); C
1243-
Linear code of length 6, dimension 4 over Finite Field in a of size 3^2
1244-
sage: C.minimum_distance()
1245-
3
1246-
1247-
REFERENCES:
1248-
1249-
- [W] http://en.wikipedia.org/wiki/Reed-Solomon
1250-
"""
1205+
from sage.misc.superseded import deprecation
1206+
from sage.coding.grs import GeneralizedReedSolomonCode
1207+
deprecation(18928, "codes.ReedSolomonCode is now deprecated. Please use codes.GeneralizedReedSolomonCode instead.")
12511208
q = F.order()
1252-
power = lambda x,n,F: (x==0 and n==0) and F(1) or F(x**n) # since 0^0 is undefined
12531209
if n>q or k>n or k>q:
12541210
raise ValueError("RS codes does not exist with the given input.")
12551211
if pts is not None and len(pts) != n:
@@ -1261,11 +1217,7 @@ def ReedSolomonCode(n,k,F,pts = None):
12611217
if i<n:
12621218
pts.append(x)
12631219
i = i+1
1264-
MS = MatrixSpace(F, k, n)
1265-
rowsG = []
1266-
rowsG = [[power(x,j,F) for x in pts] for j in range(k)]
1267-
G = MS(rowsG)
1268-
return LinearCode(G, d=n-k+1)
1220+
return GeneralizedReedSolomonCode(pts, k)
12691221

12701222

12711223
def TernaryGolayCode():

src/sage/coding/codes_catalog.py

+2
Original file line numberDiff line numberDiff line change
@@ -28,6 +28,8 @@
2828
ReedSolomonCode, TernaryGolayCode,
2929
ToricCode, TrivialCode, WalshCode)
3030

31+
from grs import GeneralizedReedSolomonCode
32+
3133
from guava import BinaryReedMullerCode, QuasiQuadraticResidueCode, RandomLinearCodeGuava
3234

3335
import decoders_catalog as decoders

src/sage/coding/encoder.py

+6-7
Original file line numberDiff line numberDiff line change
@@ -142,12 +142,11 @@ def unencode(self, c, nocheck=False):
142142
143143
INPUT:
144144
145-
- ``c`` -- a vector of the same length as :meth:`code` over the
146-
base field of :meth:`code`.
145+
- ``c`` -- a codeword of :meth:`code`.
147146
148-
- ``nocheck`` -- (default: ``False``) checks if ``c`` is in ``self``. You might set
147+
- ``nocheck`` -- (default: ``False``) checks if ``c`` is in :meth:`code`. You might set
149148
this to ``True`` to disable the check for saving computation. Note that if ``c`` is
150-
not in ``self`` and ``nocheck = True``, then the output of :meth:`unencode` is
149+
not in :meth:`self` and ``nocheck = True``, then the output of :meth:`unencode` is
151150
not defined (except that it will be in the message space of ``self``).
152151
153152
OUTPUT:
@@ -231,12 +230,12 @@ def unencode_nocheck(self, c):
231230
232231
INPUT:
233232
234-
- ``c`` -- a vector of the same length as ``self`` over the
235-
base field of ``self``
233+
234+
- ``c`` -- a codeword of :meth:`code`.
236235
237236
OUTPUT:
238237
239-
- a vector
238+
- an element of the message space of ``self``.
240239
241240
EXAMPLES::
242241

src/sage/coding/encoders_catalog.py

+8
Original file line numberDiff line numberDiff line change
@@ -3,8 +3,15 @@
33
44
The ``codes.encoders`` object may be used to access the encoders that Sage can build.
55
6+
**Generic encoders**
7+
68
:class:`linear_code.LinearCodeGeneratorMatrixEncoder <sage.coding.linear_code.LinearCodeGeneratorMatrixEncoder>`
79
10+
**Generalized Reed-Solomon code encoders**
11+
12+
- :class:`grs.GRSEvaluationVectorEncoder <sage.coding.grs.GRSEvaluationVectorEncoder>`
13+
- :class:`grs.GRSEvaluationPolynomialEncoder <sage.coding.grs.GRSEvaluationPolynomialEncoder>`
14+
815
.. NOTE::
916
1017
To import these names into the global namespace, use:
@@ -23,3 +30,4 @@
2330

2431
from sage.misc.lazy_import import lazy_import as _lazy_import
2532
_lazy_import('sage.coding.linear_code', 'LinearCodeGeneratorMatrixEncoder')
33+
_lazy_import('sage.coding.grs', ['GRSEvaluationVectorEncoder', 'GRSEvaluationPolynomialEncoder'])

0 commit comments

Comments
 (0)