Skip to content

Commit 1749b85

Browse files
author
Release Manager
committed
Trac #34373: Implement multimajor index for permutations
We add an implementation for the multimajor index of a permutation with respect to a combination of the same size, as described in: > Armin Jöllenbeck and Manfred Schocker. Cyclic > characters of symmetric groups. J. Algebraic Combin., > 12 (2000), 155-161. [https://doi.org/10.1023/A:1026592027019 doi:10.1023/A:1026592027019] URL: https://trac.sagemath.org/34373 Reported by: gh-25shriya Ticket author(s): Amrutha P, Shriya M, Divya Aggarwal, Aritra Bhattacharya Reviewer(s): Amrutha P, Aritra Bhattacharya, Julian Rüth, Samuel Lelièvre
2 parents 85b5ab9 + 9a93d1d commit 1749b85

File tree

2 files changed

+57
-0
lines changed

2 files changed

+57
-0
lines changed

src/doc/en/reference/references/index.rst

+5
Original file line numberDiff line numberDiff line change
@@ -3330,6 +3330,11 @@ REFERENCES:
33303330
*Combinatorics of symmetric designs*.
33313331
Cambridge University Press, 2006.
33323332
3333+
.. [JS2000] \A. Joellenbeck, M. Schocker.
3334+
"Cyclic Characters of Symmetric Groups".
3335+
J. Algebraic Combin., **12** (2000), 155-161.
3336+
:doi:`10.1023/A:1026592027019`.
3337+
33333338
.. [JS2010] \B. Jones, A. Schilling.
33343339
"Affine structures and a tableau model for `E_6` crystals",
33353340
J. Algebra. **324** (2010). 2512-2542.

src/sage/combinat/permutation.py

+52
Original file line numberDiff line numberDiff line change
@@ -221,12 +221,18 @@
221221
finite Weyl group to make it more uniform with :class:`SymmetricGroup`.
222222
Added ability to compute the conjugacy classes.
223223
224+
- Amrutha P, Shriya M, Divya Aggarwal (2022-08-16): Added Multimajor Index.
225+
224226
Classes and methods
225227
===================
226228
"""
227229

228230
# ****************************************************************************
229231
# Copyright (C) 2007 Mike Hansen <[email protected]>
232+
# 2022 Amrutha P <[email protected]>
233+
# 2022 Shriya M <[email protected]>
234+
# 2022 Divya Aggarwal <[email protected]>
235+
#
230236
#
231237
# This program is free software: you can redistribute it and/or modify
232238
# it under the terms of the GNU General Public License as published by
@@ -3365,6 +3371,52 @@ def major_index(self, final_descent=False) -> Integer:
33653371
descents = self.descents(final_descent)
33663372
return sum(descents)
33673373

3374+
def multi_major_index(self, composition):
3375+
r"""
3376+
Return the multimajor index of this permutation with respect to ``composition``.
3377+
3378+
INPUT:
3379+
3380+
- ``composition`` -- a composition of the :meth:`size` of this permutation
3381+
3382+
EXAMPLES::
3383+
3384+
sage: p = Permutation([5, 6, 2, 1, 3, 7, 4])
3385+
sage: p.multi_major_index([3, 2, 2])
3386+
[2, 0, 1]
3387+
sage: p.multi_major_index([7]) == [p.major_index()]
3388+
True
3389+
sage: p.multi_major_index([1]*7)
3390+
[0, 0, 0, 0, 0, 0, 0]
3391+
sage: Permutation([]).multi_major_index([])
3392+
[]
3393+
3394+
TESTS::
3395+
3396+
sage: p.multi_major_index([1, 3, 3, 7])
3397+
Traceback (most recent call last):
3398+
...
3399+
ValueError: size of the composition should be equal to size of the permutation
3400+
3401+
REFERENCES:
3402+
3403+
- [JS2000]_
3404+
"""
3405+
composition = Composition(composition)
3406+
if self.size() != composition.size():
3407+
raise ValueError("size of the composition should be equal to size of the permutation")
3408+
descents = self.descents()
3409+
partial_sum = [0] + composition.partial_sums()
3410+
multimajor_index = []
3411+
for j in range(1, len(partial_sum)):
3412+
a = partial_sum[j-1]
3413+
b = partial_sum[j]
3414+
from bisect import bisect_right, bisect_left
3415+
start = bisect_right(descents, a)
3416+
end = bisect_left(descents, b)
3417+
multimajor_index.append(sum(descents[start: end])-(end-start)*a)
3418+
return multimajor_index
3419+
33683420
def imajor_index(self, final_descent=False) -> Integer:
33693421
"""
33703422
Return the inverse major index of the permutation ``self``, which is

0 commit comments

Comments
 (0)