Skip to content

Commit 2a41c6e

Browse files
author
Release Manager
committedSep 19, 2022
Trac #32669: Adding upper and lower Bruhat cones of M. Dyer to sage/combinat/root_system/reflection_group_real.py
To a pair of elements x,y in a Coxeter group W one can associate two polyhedral cones. The 'upper bruhat cone' generated by all roots beta such that s_beta * x covers x and s_beta * x <= y and similarly the 'lower bruhat cone' generated by all beta sucht that y covers s_beta * y and x <= s_beta * y . These cones were used in https://eudml.org/doc/174610 and https://arxiv.org/abs/2103.03715 URL: https://trac.sagemath.org/32669 Reported by: gh-DennisJahn Ticket author(s): Dennis Jahn Reviewer(s): Frédéric Chapoton, Travis Scrimshaw
2 parents 12756f6 + 648e634 commit 2a41c6e

File tree

3 files changed

+105
-3
lines changed

3 files changed

+105
-3
lines changed
 

‎src/doc/en/reference/references/index.rst

+7
Original file line numberDiff line numberDiff line change
@@ -2150,6 +2150,9 @@ REFERENCES:
21502150
.. [Dy1993] \M. J. Dyer. *Hecke algebras and shellings of Bruhat
21512151
intervals*. Compositio Mathematica, 1993, 89(1): 91-115.
21522152
2153+
.. [Dy1994] \M. J. Dyer. *Bruhat intervals, polyhedral cones and
2154+
Kazhdan-Lusztig-Stanley polynomials*. Math.Z., 215(2):223-236, 1994.
2155+
21532156
.. _ref-E:
21542157

21552158
**E**
@@ -3340,6 +3343,10 @@ REFERENCES:
33403343
J. Algebra. **324** (2010). 2512-2542.
33413344
:doi:`10.1016/j.bbr.2011.03.031`, :arxiv:`0909.2442`.
33423345
3346+
.. [JS2021] \D. Jahn, C. Stump.
3347+
*Bruhat intervals, subword complexes and brick polyhedra for
3348+
finite Coxeter groups*, 2021, :arxiv:`2103.03715`.
3349+
33433350
.. [JV2000] \J. Justin, L. Vuillon, *Return words in Sturmian and
33443351
episturmian words*, Theor. Inform. Appl. 34 (2000)
33453352
343--356.

‎src/sage/categories/coxeter_groups.py

+16-3
Original file line numberDiff line numberDiff line change
@@ -2176,12 +2176,25 @@ def bruhat_lower_covers_reflections(self):
21762176
sage: w.bruhat_lower_covers_reflections()
21772177
[(s1*s2*s1, s1*s2*s3*s2*s1), (s3*s2*s1, s2), (s3*s1*s2, s1)]
21782178
2179+
TESTS:
2180+
2181+
Check bug discovered in :trac:`32669` is fixed::
2182+
2183+
sage: W = CoxeterGroup(['A',3], implementation='permutation')
2184+
sage: W.w0.bruhat_lower_covers_reflections()
2185+
[((1,3,7,9)(2,11,6,10)(4,8,5,12), (2,5)(3,9)(4,6)(8,11)(10,12)),
2186+
((1,11)(3,10)(4,9)(5,7)(6,12), (1,4)(2,8)(3,5)(7,10)(9,11)),
2187+
((1,9,7,3)(2,10,6,11)(4,12,5,8), (1,7)(2,4)(5,6)(8,10)(11,12))]
21792188
"""
2180-
i = self.first_descent()
2189+
i = self.first_descent(side='right')
21812190
if i is None:
21822191
return []
2183-
wi = self.apply_simple_reflection(i)
2184-
return [(u.apply_simple_reflection(i), r.apply_conjugation_by_simple_reflection(i)) for u, r in wi.bruhat_lower_covers_reflections() if not u.has_descent(i)] + [(wi, self.parent().simple_reflection(i))]
2192+
wi = self.apply_simple_reflection(i, side='right')
2193+
return [(u.apply_simple_reflection(i, side='right'),
2194+
r.apply_conjugation_by_simple_reflection(i))
2195+
for u,r in wi.bruhat_lower_covers_reflections()
2196+
if not u.has_descent(i, side='right')] + [
2197+
(wi, self.parent().simple_reflection(i))]
21852198

21862199
def lower_cover_reflections(self, side='right'):
21872200
r"""

‎src/sage/combinat/root_system/reflection_group_real.py

+82
Original file line numberDiff line numberDiff line change
@@ -706,6 +706,88 @@ def simple_root_index(self, i):
706706
[0, 1, 2]
707707
"""
708708
return self._index_set_inverse[i]
709+
710+
def bruhat_cone(self, x, y, side='upper', backend='cdd'):
711+
r"""
712+
Return the (upper or lower) Bruhat cone associated to the interval ``[x,y]``.
713+
714+
To a cover relation `v \prec w` in strong Bruhat order you can assign a positive
715+
root `\beta` given by the unique reflection `s_\beta` such that `s_\beta v = w`.
716+
717+
The upper Bruhat cone of the interval `[x,y]` is the non-empty, polyhedral cone generated
718+
by the roots corresponding to `x \prec a` for all atoms `a` in the interval.
719+
The lower Bruhat cone of the interval `[x,y]` is the non-empty, polyhedral cone generated
720+
by the roots corresponding to `c \prec y` for all coatoms `c` in the interval.
721+
722+
INPUT:
723+
724+
- ``x`` - an element in the group `W`
725+
- ``y`` - an element in the group `W`
726+
- ``side`` (default: ``'upper'``) -- must be one of the following:
727+
728+
* ``'upper'`` - return the upper Bruhat cone of the interval [``x``, ``y``]
729+
* ``'lower'`` - return the lower Bruhat cone of the interval [``x``, ``y``]
730+
731+
- ``backend`` -- string (default: ``'cdd'``); the backend to use to create the polyhedron
732+
733+
EXAMPLES::
734+
735+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
736+
sage: x = W.from_reduced_word([1]) # optional - gap3
737+
sage: y = W.w0 # optional - gap3
738+
sage: W.bruhat_cone(x, y) # optional - gap3
739+
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 1 vertex and 2 rays
740+
741+
sage: W = ReflectionGroup(['E',6]) # optional - gap3
742+
sage: x = W.one() # optional - gap3
743+
sage: y = W.w0 # optional - gap3
744+
sage: W.bruhat_cone(x, y, side='lower') # optional - gap3
745+
A 6-dimensional polyhedron in QQ^6 defined as the convex hull of 1 vertex and 6 rays
746+
747+
TESTS::
748+
749+
sage: W = ReflectionGroup(['A',2]) # optional - gap3
750+
sage: x = W.one() # optional - gap3
751+
sage: y = W.w0 # optional - gap3
752+
sage: W.bruhat_cone(x, y, side='nonsense') # optional - gap3
753+
Traceback (most recent call last):
754+
...
755+
ValueError: side must be either 'upper' or 'lower'
756+
757+
REFERENCES:
758+
759+
- [Dy1994]_
760+
- [JS2021]_
761+
"""
762+
if side == 'upper':
763+
roots = [self.reflection_to_positive_root(x * r * x.inverse())
764+
for z, r in x.bruhat_upper_covers_reflections()
765+
if z.bruhat_le(y)]
766+
elif side == 'lower':
767+
roots = [self.reflection_to_positive_root(y * r * y.inverse())
768+
for z, r in y.bruhat_lower_covers_reflections()
769+
if x.bruhat_le(z)]
770+
else:
771+
raise ValueError("side must be either 'upper' or 'lower'")
772+
773+
from sage.geometry.polyhedron.constructor import Polyhedron
774+
if self.is_crystallographic():
775+
return Polyhedron(vertices=[[0] * self.rank()],
776+
rays=roots,
777+
ambient_dim=self.rank(),
778+
backend=backend)
779+
if backend == 'cdd':
780+
from warnings import warn
781+
warn("Using floating point numbers for roots of unity. This might cause numerical errors!")
782+
from sage.rings.real_double import RDF as base_ring
783+
else:
784+
from sage.rings.qqbar import AA as base_ring
785+
786+
return Polyhedron(vertices=[[0] * self.rank()],
787+
rays=roots,
788+
ambient_dim=self.rank(),
789+
base_ring=base_ring,
790+
backend=backend)
709791

710792
class Element(RealReflectionGroupElement, ComplexReflectionGroup.Element):
711793

0 commit comments

Comments
 (0)