@@ -188,6 +188,7 @@ from sage.structure.parent cimport Parent
188
188
from sage.structure.unique_representation import UniqueRepresentation
189
189
from sage.arith.long cimport is_small_python_int
190
190
191
+ from sage.misc.superseded import deprecated_function_alias
191
192
from sage.rings.complex_mpfr import ComplexField
192
193
from sage.rings.complex_interval_field import ComplexIntervalField, ComplexIntervalField_class
193
194
from sage.rings.integer_ring import ZZ
@@ -4175,92 +4176,134 @@ cdef class ComplexBall(RingElement):
4175
4176
if _do_sig(prec(self )): sig_off()
4176
4177
return res
4177
4178
4178
- def ei (self ):
4179
+ def Ei (self ):
4179
4180
"""
4180
4181
Return the exponential integral with argument ``self``.
4181
4182
4182
4183
EXAMPLES::
4183
4184
4184
- sage: CBF(1, 1).ei ()
4185
+ sage: CBF(1, 1).Ei ()
4185
4186
[1.76462598556385 +/- ...e-15] + [2.38776985151052 +/- ...e-15]*I
4186
- sage: CBF(0).ei ()
4187
+ sage: CBF(0).Ei ()
4187
4188
nan
4189
+
4190
+ TESTS:
4191
+
4192
+ sage: CBF(Ei(I))
4193
+ [0.337403922900968 +/- 3.76e-16] + [2.51687939716208 +/- 2.01e-15]*I
4188
4194
"""
4189
4195
cdef ComplexBall result = self ._new()
4190
4196
if _do_sig(prec(self )): sig_on()
4191
4197
acb_hypgeom_ei(result.value, self .value, prec(self ))
4192
4198
if _do_sig(prec(self )): sig_off()
4193
4199
return result
4194
4200
4195
- def si (self ):
4201
+ ei = deprecated_function_alias(32869 , Ei)
4202
+
4203
+ def Si (self ):
4196
4204
"""
4197
4205
Return the sine integral with argument ``self``.
4198
4206
4199
4207
EXAMPLES::
4200
4208
4201
- sage: CBF(1, 1).si ()
4209
+ sage: CBF(1, 1).Si ()
4202
4210
[1.10422265823558 +/- ...e-15] + [0.88245380500792 +/- ...e-15]*I
4203
- sage: CBF(0).si ()
4211
+ sage: CBF(0).Si ()
4204
4212
0
4213
+
4214
+ TESTS:
4215
+
4216
+ sage: CBF(Si(I))
4217
+ [1.05725087537573 +/- 2.77e-15]*I
4205
4218
"""
4206
4219
cdef ComplexBall result = self ._new()
4207
4220
if _do_sig(prec(self )): sig_on()
4208
4221
acb_hypgeom_si(result.value, self .value, prec(self ))
4209
4222
if _do_sig(prec(self )): sig_off()
4210
4223
return result
4211
4224
4212
- def ci (self ):
4225
+ sin_integral = Si # as for the symbolic function
4226
+
4227
+ si = deprecated_function_alias(32869 , Si)
4228
+
4229
+ def Ci (self ):
4213
4230
"""
4214
4231
Return the cosine integral with argument ``self``.
4215
4232
4216
4233
EXAMPLES::
4217
4234
4218
- sage: CBF(1, 1).ci ()
4235
+ sage: CBF(1, 1).Ci ()
4219
4236
[0.882172180555936 +/- ...e-16] + [0.287249133519956 +/- ...e-16]*I
4220
- sage: CBF(0).ci ()
4237
+ sage: CBF(0).Ci ()
4221
4238
nan + nan*I
4239
+
4240
+ TESTS:
4241
+
4242
+ sage: CBF(Ci(I))
4243
+ [0.837866940980208 +/- 4.72e-16] + [1.570796326794897 +/- 5.54e-16]*I
4222
4244
"""
4223
4245
cdef ComplexBall result = self ._new()
4224
4246
if _do_sig(prec(self )): sig_on()
4225
4247
acb_hypgeom_ci(result.value, self .value, prec(self ))
4226
4248
if _do_sig(prec(self )): sig_off()
4227
4249
return result
4228
4250
4229
- def shi (self ):
4251
+ cos_integral = Ci # as for the symbolic function
4252
+
4253
+ ci = deprecated_function_alias(32869 , Ci)
4254
+
4255
+ def Shi (self ):
4230
4256
"""
4231
4257
Return the hyperbolic sine integral with argument ``self``.
4232
4258
4233
4259
EXAMPLES::
4234
4260
4235
- sage: CBF(1, 1).shi ()
4261
+ sage: CBF(1, 1).Shi ()
4236
4262
[0.88245380500792 +/- ...e-15] + [1.10422265823558 +/- ...e-15]*I
4237
- sage: CBF(0).shi ()
4263
+ sage: CBF(0).Shi ()
4238
4264
0
4239
- """
4240
4265
4266
+ TESTS:
4267
+
4268
+ sage: CBF(Shi(I))
4269
+ [0.946083070367183 +/- 9.22e-16]*I
4270
+ """
4241
4271
cdef ComplexBall result = self ._new()
4242
4272
if _do_sig(prec(self )): sig_on()
4243
4273
acb_hypgeom_shi(result.value, self .value, prec(self ))
4244
4274
if _do_sig(prec(self )): sig_off()
4245
4275
return result
4246
4276
4247
- def chi (self ):
4277
+ sinh_integral = Shi
4278
+
4279
+ shi = deprecated_function_alias(32869 , Shi)
4280
+
4281
+ def Chi (self ):
4248
4282
"""
4249
4283
Return the hyperbolic cosine integral with argument ``self``.
4250
4284
4251
4285
EXAMPLES::
4252
4286
4253
- sage: CBF(1, 1).chi ()
4287
+ sage: CBF(1, 1).Chi ()
4254
4288
[0.882172180555936 +/- ...e-16] + [1.28354719327494 +/- ...e-15]*I
4255
- sage: CBF(0).chi ()
4289
+ sage: CBF(0).Chi ()
4256
4290
nan + nan*I
4291
+
4292
+ TESTS:
4293
+
4294
+ sage: CBF(Chi(I))
4295
+ [0.337403922900968 +/- 3.25e-16] + [1.570796326794897 +/- 5.54e-16]*I
4257
4296
"""
4258
4297
cdef ComplexBall result = self ._new()
4259
4298
if _do_sig(prec(self )): sig_on()
4260
4299
acb_hypgeom_chi(result.value, self .value, prec(self ))
4261
4300
if _do_sig(prec(self )): sig_off()
4262
4301
return result
4263
4302
4303
+ cosh_integral = Chi
4304
+
4305
+ chi = deprecated_function_alias(32869 , Chi)
4306
+
4264
4307
def li (self , bint offset = False ):
4265
4308
"""
4266
4309
Return the logarithmic integral with argument ``self``.
@@ -4279,13 +4322,43 @@ cdef class ComplexBall(RingElement):
4279
4322
0.000000000000000
4280
4323
sage: Li(0).n()
4281
4324
-1.04516378011749
4325
+
4326
+ TESTS::
4327
+
4328
+ sage: CBF(li(0))
4329
+ 0
4330
+ sage: CBF(Li(0))
4331
+ [-1.04516378011749...]
4282
4332
"""
4283
4333
cdef ComplexBall result = self ._new()
4284
4334
if _do_sig(prec(self )): sig_on()
4285
4335
acb_hypgeom_li(result.value, self .value, offset, prec(self ))
4286
4336
if _do_sig(prec(self )): sig_off()
4287
4337
return result
4288
4338
4339
+ log_integral = li
4340
+
4341
+ def Li (self ):
4342
+ """
4343
+ Offset logarithmic integral.
4344
+
4345
+ EXAMPLES::
4346
+
4347
+ sage: CBF(0).Li()
4348
+ [-1.045163780117493 +/- ...e-16]
4349
+ sage: li(0).n()
4350
+ 0.000000000000000
4351
+ sage: Li(0).n()
4352
+ -1.04516378011749
4353
+ """
4354
+ cdef ComplexBall result = self ._new()
4355
+ if _do_sig(prec(self )): sig_on()
4356
+ acb_hypgeom_li(result.value, self .value, True , prec(self ))
4357
+ if _do_sig(prec(self )): sig_off()
4358
+ return result
4359
+
4360
+ log_integral_offset = Li
4361
+
4289
4362
def jacobi_theta (self , tau ):
4290
4363
r """
4291
4364
Return the four Jacobi theta functions evaluated at the argument
0 commit comments